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ABSTRACT 

Background: A major contributor to cardiometabolic disease is caloric 
excess, often a result of consuming low cost, high calorie fast food. Studies 
have demonstrated the pivotal role of gut microbes contributing to 
cardiovascular disease in a diet-dependent manner. Given the central 
contributions of diet and gut microbiota to cardiometabolic disease, we 
hypothesized that microbial metabolites originating after fast food 
consumption can elicit acute metabolic responses in the liver.  

Methods: We gave conventionally raised mice or mice that had their 
microbiomes depleted with antibiotics a single oral gavage of a liquified 
fast food meal or liquified control rodent chow meal. After four hours, 
mice were sacrificed and we used untargeted metabolomics of portal and 
peripheral blood, 16S rRNA gene sequencing, targeted liver metabolomics, 
and host liver RNA sequencing to identify novel fast food-derived 
microbial metabolites and their acute effects on liver function.  

Results: Several candidate microbial metabolites were enriched in portal 
blood upon fast food feeding, and were essentially absent in antibiotic-
treated mice. Strikingly, at four hours post-gavage, fast food consumption 
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resulted in rapid reorganization of the gut microbial community and 
drastically altered hepatic gene expression. Importantly, diet-driven 
reshaping of the microbiome and liver transcriptome was dependent on an 
intact microbial community and not observed in antibiotic ablated animals.  

Conclusions: Collectively, these data suggest a single fast food meal is 
sufficient to reshape the gut microbial community in mice, yielding a 
unique signature of food-derived microbial metabolites. Future studies 
are in progress to determine the contribution of select metabolites to 
cardiometabolic disease progression and the translational relevance of 
these animal studies. 

KEYWORDS: microbiome; metabolomics; nutrition; circadian 

ABBREVIATIONS  

MetS, metabolic syndrome; TMA, trimethylamine; Fmo3, flavin-containing 
monooxygenase 3; TMAO, trimethylamine-N-oxide; DADA, divisive amplicon 
denoising algorithm pipeline; NMDS, non-metric multidimensional scaling; 
FDR, false discovery rate; ANOVA, analysis of variance; PERMANOVA, 
permutational multivariate analysis of variance; LCMS, liquid 
chromatography–mass spectrometry; QC, quality control; UHPLC, Ultra-
High-Performance Liquid Chromatography; ESI, electrospray ionization; MS, 
mass spectrometry; LPA, lysophosphatidic acid; MS/MS, Tandem Mass 
Spectrometry; IQR, interquartile range; KEGG, Kyoto Encyclopedia of Genes 
and Genomes; HMDB, Human Metabolome Database; LIPID MAPS, Lipid 
Metabolites and Pathways Strategy; PCA, principal component analysis; SRA, 
Sequence Read Archive; RT-qPCR, real time quantitative polymerase chain 
reaction; m/z_RT, mass-to-charge ratio_retention time 

INTRODUCTION 

Metabolic syndrome (MetS) is a pervasive disorder impacting roughly 
one in three adults in the United States [1]. Individuals with MetS have an 
increased propensity to develop cardiovascular-related diseases and have 
higher incidence of all-cause mortality [2,3]. Although many factors may 
contribute to the development and progression of MetS, a surplus of 
dietary caloric intake represents a common and preventable disease risk 
factor. The increasing availability of low-cost, high-calorie, convenient 
food undoubtedly contributes to what has been described as the American 
obesity epidemic [2]. Recent controlled studies have revealed that a fixed 
dietary input amongst a group of individuals does not necessarily equate 
to a fixed output [4–7]. The variability associated with these findings is 
largely attributed to inter-individual variation in gut microbial 
composition. An excellent example of this concept is the consumption of 
foods rich in choline, phosphatidylcholine, and carnitine. Most 
omnivorous humans contain gut microbes with trimethylamine (TMA) 
lyase enzymes that convert these dietary substrates into TMA. TMA is then 
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converted by host flavin-containing monooxygenase 3 (Fmo3) into 
trimethylamine-N-oxide (TMAO), a pro-atherogenic, pro-thrombotic 
molecule [8–10]. Strikingly, vegans almost universally lack gut microbes 
capable of converting carnitine into TMA and thus do not produce TMAO 
after consuming red meat [4]. 

Traditionally, rodent models of MetS are achieved through ad libitum 
feeding of a lard based diet containing 60% of calories from fat. While 
effective in promoting obesity, hyperglycemia, and insulin resistance, these 
diets are not representative of a human diet. In order to better understand 
the interface between diet, the gut microbiome, microbial metabolites, and 
MetS, we herein propose to explore the use of a human-relevant diet.  

In this study, we aimed to identify microbe-derived metabolites 
stemming from consumption of a human-relevant fast food meal. In 
pursuit of this aim, we fed a single meal equivalent of either rodent chow 
or fast food to conventionally raised mice (with an intact gut microbiome) 
and mice that had their microbiota ablated with antibiotics. We discovered 
a rapid reorganization of the gut microbial community structure that was 
independent of microbes that might have been associated with the meals. 
Moreover, we identified unique gut microbe-derived metabolites that 
were enriched in the portal blood of mice receiving an oral gavage of fast 
food compared to those receiving chow. Distinct transcriptional profiles 
were identified in the liver with notable diet and gut microbial 
dependencies. Taken together, these data represent a multi-omics 
approach to identify novel gut microbe-derived transcriptional and 
metabolic signatures that arise postprandially after consumption of a fast 
food meal. Future studies are in progress to determine which of these 
metabolites are causally linked to MetS. 

MATERIALS AND METHODS 

Animal Studies 

6-week old male C57BL6/J mice were purchased from Jackson 
Laboratories (Bar Harbor, ME, USA) and randomly assigned to control 
drinking water or drinking water supplemented with vancomycin (0.5 g/L), 
neomycin (1 g/L), ampicillin (1 g/L), and metronidazole (1 g/L) and 
maintained on a defined rodent chow (TD.130104) for two weeks (n = 6–7 
per group). Next, mice were fasted overnight and at the beginning of the 
light cycle were given a single oral gavage (0.2 mL) of either liquified 
chemically defined chow (TD.130104) from Harlan Laboratories (Madison, 
WI) or liquified fast food (procured from local fast food restaurants) and 
sacrificed exactly 4 h later. The 4 h postprandial time point was chosen 
based on previous studies showing the production of the gut microbe-
associated co-metabolites trimethylamine (TMA) and trimethylamine N-
oxide (TMAO) peak ~2–4 h after a high fat meal [11,12]. Our goal was to 
choose a relevant time point where gut microbes would be actively 
producing metabolites from the dietary substrates provided. To accurately 
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model a human-relevant fast food meal, food items were purchased from 
three of the top five grossing fast food chains in the USA (McDonald’s, Taco 
Bell, and Burger King). All food was ordered locally in Cleveland, Ohio with 
instructions to the servers to exclude any vegetable products (i.e., no 
lettuce, tomato, onion, etc.). The actual items used to make the liquified 
fast food meal are shown in Figure 1, and included the following popular 
menu items: (1) McDonald’s double quarter pounder with cheese, (2) 
McDonald’s chicken tenders, (3) McDonald’s French fries, (4) Burger King 
Whopper with cheese, (5) Burger King original chicken sandwich, (6) 
Burger King cheesy tots, (7) Burger King French fries, (8) Taco Bell beef 
crunchy taco, (9) Taco Bell chicken quesadilla, and (10) Taco Bell 5 layer 
burrito. To mimic what the human intestine sees after a fast food meal, the 
items above were minced into a solvent of Coca Cola and a McDonald’s 
chocolate milkshake using an industrial blender. The resulting fast food 
slurry or a control slurry of rodent chow (TD.130104) in water solvent was 
administered via oral gavage, and exactly 4 h postprandially mice were 
terminally anesthetized with ketamine/xylazine (100–160 mg/kg ketamine 
-20–32 mg/kg xylazine), and a midline laparotomy was performed. A small 
volume (~50–100 µL) of blood was collected directly from the portal vein 
(i.e., blood draining from the gut where microbe-derived metabolites are 
enriched), and the remaining peripheral blood was collected via cardiac 
puncture. Following blood collection, a whole body perfusion was conducted 
by puncturing the inferior vena cava and slowly delivering 10 mL of saline 
into the heart to remove blood from tissues. Tissues were collected and 
immediately snap frozen in liquid nitrogen for subsequent biochemical 
analysis or fixed for morphological analysis. All animal procedures were 
approved on September 9, 2016 under protocol 2016-1631 by the 
Institutional Animal Care and Use Committee of the Cleveland Clinic. 

 

Figure 1. Experimental Design to Identify Fast Food-Derived Gut Microbial Metabolites. 6-week old 
male C57BL6/J mice were randomly assigned to normal drinking water or drinking water supplemented 
with vancomycin (0.5 g/L), neomycin (1 g/L), ampicillin (1 g/L), and metronidazole (1 g/L) for two weeks. 
Next, mice were given a single oral gavage of either chow slurry or fast food slurry and sacrificed 4 h later 
for phenotypic characterization.  
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Cecal and Food Microbiome Analyses 

DNA was extracted from mouse cecal contents and food samples using 
the QIAGEN PowerSoil Pro kit using the manufacturer’s protocol. 16S rRNA 
amplicon sequencing was done for the V1-V2 region using Illumina MiSeq at 
2 × 250 cycles from mouse cecal contents and food samples. Raw 16S 
amplicon sequences and metadata were demultiplexed using the 
split_libraries_fastq.py script implemented in QIIME1.9.1 [13]. The 
demultiplexed fastq file was split into sample specific fastq files using the 
split_sequence_file_on_sample_ids.py script from QIIME1.9.1 [13]. Individual 
fastq files without non-biological nucleotides were processed using the 
Divisive Amplicon Denoising Algorithm (DADA) pipeline [14]. The output of 
the DADA2 pipeline (feature table of amplicon sequence variants) was 
processed for alpha and beta diversity analysis using the phyloseq [15] and 
microbiomeSeq packages (http://www.github.com/umerijaz/microbiomeSeq) 
in R. Alpha diversity estimates were measured within group categories using 
the estimate_richness function of the phyloseq package [15]. Non-metric 
multidimensional scaling (NMDS) was performed using the Bray-Curtis 
dissimilarity matrix [16] between groups and visualized by using the ggplot2 
package [17]. We assessed the statistical significance (p < 0.05) throughout, 
and whenever necessary we adjusted p-values for multiple comparisons 
according to the Benjamini-Hochberg method to control false discovery rate 
(FDR) [18] while performing multiple testing on taxa abundance according 
to sample categories. We performed an analysis of variance (ANOVA) among 
sample categories while measuring the alpha diversity measures using the 
plot_anova_diversity function in the microbiomeSeq package. Permutational 
multivariate analysis of variance (PERMANOVA) with 999 permutations was 
performed on all principal coordinates obtained during principal 
coordinates analysis with the ordination function of the microbiomeSeq 
package. Linear regression (parametric) and Wilcoxon (non-parametric) 
tests were performed on amplicon sequence variant abundances against 
meta-data variable levels using their base functions in R [19]. 

Plasma Untargeted Metabolomics 

Portal blood was collected from the portal vein and peripheral blood via 

cardiac puncture at time of necropsy. Blood was centrifuged at 5000 × g for 

5 min and the plasma fraction was processed via liquid chromatography-

mass spectrometry (LCMS). Plasma samples were prepared by diluting each 

sample 1:20 in chilled methanol containing isotopically labeled internal 

standards. The samples were then vortexed and centrifuged at 14,000 × g for 

20 min to precipitate out the protein pellet. The supernatants were 

recovered for LCMS analysis. One-microliter aliquots taken from each 

sample were pooled and technical replicates of this quality control (QC) 

standard were analyzed every 10 injections. 5 µL of each sample was 

injected onto a 10 cm C18 column (Thermo Fisher, CA, USA) coupled to a 
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Vanquish Ultra-High-Performance Liquid Chromatography (UHPLC+ 

focused) system running at 0.35 mL/min using water and 0.1% formic acid 

as solvent A and acetonitrile and 0.1% formic acid as solvent B. A 15-min 

gradient of [time(minutes)]:[%solvent B] of [0.2,1,8,10,12,14]:[5,15,95,95,5,5] 

was used. The Orbitrap Q-Exactive HF was operated in positive and negative 

electrospray ionization (ESI) modes covering a mass range of 56-850 Da 

using full mass spectrometry (MS) scans at 120,000 resolution. Data-

dependent MS2 spectra from the pooled QC sample were acquired on the top 

10 most abundant ions at a resolution of 30,000 with dynamic exclusion of 

40.0 s and the apex trigger set at 2.0 to 4.0 s. The resolution of the MS2 scans 

were taken at a stepped normalized collision energy of 20.0, 30.0, and 45.0. 

Lockmass was applied in both ESI modes and the full MS data were acquired 

in profile mode. Validation of 18:0 lysophosphatidic acid (LPA) was 

performed via tandem mass spectrometry (MS/MS) against a commercial 

standard(Avanti Polar Lipid, Inc. product no. 857128P). Additional reference 

spectral libraries, including Metlin (https://metlin.scripps.edu) and mzCloud 

(https://www.mzcloud.org) were searched for additional information on 

collision energy and structural elucidations. XCMS (xcmsonline.scripps.edu) 

was used to deconvolute the untargeted metabolomics data using 5 ppm 

consecutive scan error, 8 to 45 s as minimum and maximum peak width, 

and a signal-to-noise threshold of 10. 

The resulting peak tables (Supplementary File S1A,B) were further 
analyzed using MetaboLyzer as previously described to perform single two-
group analysis [20]. Briefly, the data were natural log transformed and ions 
present in at least 70% of the samples in all study groups at non-zero 
abundances (complete-presence ions) were analyzed via traditional 
statistical methods. Outliers were removed via 1.5 interquartile range (IQR) 
filtering, and the non-parametric Mann-Whitney U test (p < 0.05) was utilized 
to determine statistical significance. Ions that met the 70% presence 
threshold in only one group (partial-presence ions) were analyzed 
categorically via Fisher’s exact test. All p-values were corrected via the 
adjusted Benjamini-Hochberg correction procedure [18,21], with an FDR q-
value threshold of 0.1 (10%) to delineate significance. MetaboLyzer was also 
used for putative identification of ions at maximum m/z tolerance of 7 ppm 
using the Kyoto Encyclopedia of Genes and Genomes (KEGG) [22], Human 
Metabolome Database (HMDB) [23], Lipid Metabolites and Pathways 
Strategy (LIPID MAPS) [24], and BioCyc Database Collection [25] 
(Supplementary File S1C,D). Metabolyzer offered a deep understanding of 
single two-group analyses, generating volcano plots, principal component 
analysis (PCA) score plots, and metabolic pathway enrichment plots.  

In addition, a novel Python programming language (v3.7.0) script was 
used to perform several two-group analyses simultaneously to identify 
ions that satisfied a complete set of user-specified comparison criteria 
(Supplementary File S3). Ions absent in greater than 50% of all samples 
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were excluded from analysis. Zeros were converted to half the lower limit 
of detection, defined by the lowest intensity value of all samples for that 
ion. Values were natural log converted. Outlier values were removed via 
1.5 IQR filtering and excluded from analysis. For each user-specified two-
group comparison, the Mann-Whitney U test was used to generate p-values, 
then an adjusted Benjamini-Hochberg correction procedure was 
performed to determine q-values [18,21]. An FDR q-value threshold of 0.1 
(10%) was used to delineate significance. Desired comparison criteria were 
specified by the user (e.g., significant increase from group 1 to group 2, 
significant decrease from group 2 to group 3, etc.), and ions meeting all 
comparison criteria i.e., hits were displayed with their relevant information 
including putative ID if available. To rank their fitness of the comparison 
criteria listed, hits were scored based on user-specified weights for fold-
change differences between groups of each comparison, and were displayed 
in order of fitness. Values were reconverted to exponential form, and bar 
graphs were made with GraphPad Prism (v9.0.0). 

Liver Targeted Metabolomics 

The AbsoluteIDQ® p400 HR kit from Biocrates Life Sciences AG was used 
to obtain targeted quantitative metabolomics data. Liver tissue was collected 
at time of necropsy following transcardial saline perfusion. The liver tissue 
samples were prepared according to manufacturer protocol. Briefly, at least 
30 mg of each tissue sample was cut and weighed, and kept frozen 
throughout this protocol. The tissue samples were homogenized and 
centrifuged at 10,000 × g for 5 min. The supernatant was then collected, 10 
μL of which per sample was loaded onto a 96-well plate containing stable 
isotope-labeled standards, and processed according to manufacturer 
protocol. The LCMS analysis was done using specific parameters (both Tune 
and LCMS methods) per kit manufacturer’s recommendations. The assay 
was performed on a Q-Exactive HF (operated only in positive ESI mode) 
coupled with a Vanquish UHPLC+ focused liquid chromatography as detailed 
per assay instructions. The manufacturer-provided software, MetIDQ 
(Biocrates, Life Science AG), was used to provide the resultant peak table 
(Supplementary File S2). Python programming language (v3.7.0) was used to 
analyze the data (Supplementary File S4). Molecules absent in greater than 
50% of samples were excluded from analysis. Outlier values were removed 
via 1.5 IQR filtering and excluded from analysis. Comparisons were 
performed using the Mann-Whitney U test to generate p-values, then an 
adjusted Benjamini-Hochberg correction procedure was performed to 
determine q-values [18,21]. An FDR q-value threshold of 0.15 (15%) was used 
to delineate significance. Z-scores were calculated for heatmap generation. 
Bar graphs and heatmaps were made with GraphPad Prism (v9.0.0). 

Hepatic RNA Sequencing and Analysis 

RNA was isolated via the RNeasy Plus Mini Kit (Qiagen, Hong Kong) 
from mouse liver following the manufacturer’s protocol. RNA samples 
were checked for quality and quantity using the Bioanalyzer (Agilent, 
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Santa Clara, CA, USA). RNA-Seq libraries were generated using the 
Illumina mRNA TruSeq RNA library kit following Ribo-Zero depletion and 
sequenced using an Illumina HiSeq 4000 (all according to the 
manufacturer’s instructions). RNA sequencing was performed by the 
University of Chicago Genomics Facility. Single 50 bp reads were 
controlled for quality with FastQC 
(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) before 
trimming Illumina adapters from the 3’ ends using cutadapt [26]. STAR 
was used to align trimmed reads to the Mus musculus genome (NCBI 
GRCm38.93) [27]. Read counts for each gene were calculated using HTseq 
[28] and loaded into R (http://www.R-project.org/) (R Development Core 
Team, 2015) where DESeq2 [29] (v.1.28.1, 
https://bioconductor.org/packages/release/bioc/html/DESeq2.html) was 
used to perform differential expression analysis on genes with at least 1 
count per sample with alpha set to 0.05. P-values were adjusted using the 
Benjamini-Hochberg correction procedure [18] and genes with p < 0.05 were 
considered statistically significant. Heatmaps were generated of the top 50 
differentially expressed transcripts using pheatmap [30] and RColorBrewer 
[31]. NMDS analysis was performed using the plotMDS function of edgeR [32] 
using the top 500 differentially expressed genes as sorted by log2 fold change. 
Pathway analysis on the top 150 differentially expressed genes was 
performed using Metascape [33]. The data discussed in this publication have 
been deposited in NCBI's Gene Expression Omnibus [34] and are accessible 
through GEO Series accession number GSE165756. 

Real Time Quantitative PCR Analysis of Gene Expression 

RNA was isolated via the RNeasy Plus Mini Kit (Qiagen, Hong Kong) from 
mouse liver following the manufacturer’s protocol. Real time quantitative 
polymerase chain reaction (RT-qPCR) analyses were conducted as previously 
described [35–37]. Gapdh was used as a housekeeping gene for all RT-qPCR 
analyses and mRNA expression levels were calculated based on the ΔΔ-CT 
method. qPCR was conducted using the Applied Biosystems 7500 Real-Time 
PCR System. Primers used for RT-qPCR are available on request. 

Total Hepatic Triglyceride, Cholesterol, and Phosphatidylcholine 
Analyses 

The extraction of liver lipids and quantification of total hepatic 
triglyceride, free cholesterol, and phosphatidylcholine was conducted 
using enzymatic assays as described previously [38–40].  

Oxygen Bomb Calorimetry 

Samples of the chow and fast food slurries were placed into 10 mL falcon 
tubes and dried at 60 °C for 48 h. After 48 h, dried samples were weighed to 
30–55 mg per sample. This weight (in grams) was recorded in the system 
software before the sample was combusted. Samples were placed in an 
1109A Semimicro Oxygen Bomb containing a 10 cm fuse wire or 23 “units” 
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and filled with 35–40 psi oxygen. The samples were then combusted in a 
Parr Instruments 6725 semimicro calorimeter containing 450 grams of 
water. After combustion, the amount of fuse wire remaining was subtracted 
from 23 “units”. This value was input into the system and the heat of 
combustion was generated. Heat of combustion was generated in cal/g. 

Statistical Analysis 

16S rRNA Sequencing: Statistical analysis of Shannon alpha diversity 
estimates was performed via ANOVA. PERMANOVA was used to analyze 
NMDS plots based on the Bray-Curtis index between the chow and fast 
food cecal contents as well as the microbial composition of the food itself. 
Statistical analysis of pairwise differential abundance was performed with 
White’s non-parametric t-test. n = 6–7 per group. 

Untargeted Plasma Metabolomics: The data were natural log 
transformed and ions present in at least 70% of the samples in all study 
groups at non-zero abundances (complete-presence ions) were analyzed 
via traditional statistical methods. Outliers were removed via 1.5 
interquartile range (IQR) filtering, and the non-parametric Mann-Whitney 
U test (p < 0.05) was utilized to determine statistical significance. Ions that 
met the 70% presence threshold in only one group (partial-presence ions) 
were analyzed categorically via Fisher’s exact test. All p-values were 
corrected via the adjusted Benjamini-Hochberg correction procedure 
[18,21], with an FDR q-value threshold of 0.1 (10%) to delineate 
significance. Additionally, simultaneous two-group analysis was 
performed to identify ions that satisfied a complete set of user-specified 
comparison criteria (Supplementary File S3). Ions absent in greater than 
50% of all samples were excluded from analysis. Zeros were converted to 
half the lower limit of detection, defined by the lowest intensity value of 
all samples for that ion. Values were natural log converted. Outlier values 
were removed via 1.5 IQR filtering and excluded from analysis. For each 
user-specified two-group comparison, the Mann-Whitney U test was used 
to generate p-values, then an adjusted Benjamini-Hochberg correction 
procedure was performed to determine q-values [18,21]. An FDR q-value 
threshold of 0.1 (10%) was used to delineate significance. To rank the 
fitness of comparisons, hits were scored based on user-specified weights 
for fold-change differences between groups. Values were reconverted to 
exponential form. n = 4–7 per group. 

Targeted Hepatic Metabolomics: Molecules absent in greater than 50% 
of samples were excluded from analysis. Outlier values were removed via 
1.5 IQR filtering and excluded from analysis. Comparisons were 
performed using the Mann-Whitney U test to generate p-values, then an 
adjusted Benjamini-Hochberg correction procedure was performed to 
determine q-values [18,21] (Supplementary File S4). An FDR q-value 
threshold of 0.15 (15%) was used to delineate significance. Z-scores were 
calculated for heatmap generation. n = 6–7 per group. 
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RNA-Sequencing Analysis: Statistical analysis on differentially 
expressed genes was performed on genes with at least 1 count per sample 
with alpha set to 0.05. P-values were adjusted using the Benjamini-
Hochberg correction procedure [18] and genes with p < 0.05 were 
considered statistically significant. n = 4 per group. 

Quantitative-Real Time PCR: Statistical analysis of qPCR data was 
performed using a two-way ANOVA with Tukey’s multiple comparison test. 
n = 6–7 per group. 

Hepatic Lipid Analysis: Statistical analysis was performed using two-
way ANOVA with Tukey’s multiple comparisons test and significance is 
displayed for differences within each meal-type between gut microbiota 
groups (control vs antibiotic ablated) and within gut microbiota groups, 
between meal type. n = 6–7 per group. 

Bomb Calorimetry: Statistical analysis was performed using two-way 
ANOVA with Tukey’s multiple comparisons test and significance is displayed 
for differences within type of sample preparation. n = 3 per group. 

RESULTS 

A Single Fast Food Meal Promotes Rapid Remodeling of the Gut 
Microbiome 

It is well known that dietary practices can have profound effects on gut 
microbiome communities in rodents and humans [41–43]. However, most 
studies focus on microbiome alterations after days or weeks of dietary 
manipulation. Here we set out to understand the acute postprandial 
effects of a human-relevant fast food meal on gut microbiome community 
structure in C57BL/6J mice. Exactly four hours after receiving a single meal 
equivalent of either fast food or rodent chow (Figure 1, Supplementary 
Figure S1, Supplementary Tables S1 and S2), cecal contents were harvested 
and profiled via 16S rRNA sequencing (Figure 2). In addition to the cecal 
contents, the rodent chow and human-relevant fast food meal slurries 
themselves were also profiled via 16S rRNA sequencing to understand the 
potential contribution of food-associated bacteria. Alpha diversity within 
each meal type was compared between control and antibiotic-treated 
groups (Figure 2A). Strikingly, just four hours after the oral gavage, distinct 
diet- and antibiotic-dependent clustering was observed (Figure 2B). 
Importantly, these rapid shifts in microbial community are independent 
of the 16S rRNA signals contained within the food slurries themselves 
(Figure 2B,C). Moreover, antibiotic treatment led to a striking reduction in 
the Bacteroides genus in fast food-gavaged mice (Figure 2C). Not 
surprisingly, the fast food slurry itself has a relatively low diversity 
microbiome associated with it, which is largely comprised of the food-
associated commensal genera Streptococcus, Lactococcus, and 
Lactobacillus (Figure 2C) [44,45].  
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Figure 2. A Single Fast Food Meal Promotes Rapid Remodeling of the Gut Microbiome. 6-week old male 
C57BL6/J mice were randomly assigned to control drinking water or drinking water supplemented with 
broad spectrum antibiotics for two weeks. Following an overnight fast, mice were given a single oral gavage 
of either chow slurry or fast food slurry and the cecum was harvested exactly 4 h later for 16S rRNA 
sequencing. (A) Shannon alpha diversity estimates for all six groups. Statistical analysis was performed via 
ANOVA. Comparisons within diet, across microbiome status are shown to the left (Cecum), and comparisons 
between food types are shown on the right (Diet). (B) NMDS plots based on the Bray-Curtis index between 
the chow and fast food cecal contents as well as the microbial composition of the food itself. Statistical 
analysis was performed with PERMANOVA, and p-values are labeled in plots. R2 values are noted for 
comparisons with significant p-values and stand for percentage variance explained by the variable of 
interest. (C) Stacked bar charts of relative abundance (left y-axis) of the top 20 genera assembled across all 
six groups. Pairwise differential abundance analyses between (D) Chow Cecum and Chow Cecum Antibiotics, 
(E) Fast Food Cecum and Fast Food Cecum Antibiotics, (F) Chow Cecum and Fast Food Cecum, (G) Chow 
Cecum Antibiotics and Fast Food Cecum Antibiotics groups. Statistical analysis was performed with White’s 
non-parametric t-test (p-values are labeled in plots). Con = control; Abx = antibiotics. n = 6–7 per group. 
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Figure 2. Cont. 
In control water chow-gavaged mice, there was a significant enrichment 

of the Turicibacter and Bacteroides genera and loss of the Enterococcus and 
Clostridium genera when compared to the chow antibiotic treated group 
(Figure 2D). In control water fast food-gavaged mice, the genus Turicibacter 
was significantly enriched when compared to the fast food antibiotic treated 
group whereas the Parasutterella, Curtobacterium, and Methylobacterium 
genera were the most differentially abundant in the antibiotic treated group 
albeit these genera comprise a small proportion of the whole (Figure 2E). 
Notably, with an intact microbiome (non-antibiotic treated), Turicibacter 
was more abundant in chow-gavaged mice whereas Enterococcus and 
Parasutterella were enriched in fast food-gavaged mice (Figure 2F). Notably, 
some strains of Turicibacter produce lactic acid—a mediator of intestinal 
epithelial cell homeostasis [46,47]. Comparing chow- to fast food-gavaged 
mice in the context of antibiotic ablation, an enrichment of Enterococcus, 
which can act as an opportunistic pathogen [48], and Clostridium genera 
was observed (Figure 2G). Conversely, two environmental bacteria, 
Methylobacterium and Curtobacterium, were enriched in antibiotic ablated 
mice receiving fast food compared to chow (Figure 2G). These microbes 
have been described as members of complex biofilms in a variety of 
contexts ranging from nosocomial infections to plant pathogenesis [49,50]. 
In summary, these data suggest that a single meal equivalent of fast food is 
sufficient to remodel the gut microbial community structure in a short 
timeframe when compared to a chow control meal.  

A Single Fast Food Meal Alters the Portal Blood Metabolome in a Gut 
Microbe-Dependent Manner 

One of the key goals of this project was to unbiasedly identify gut 
microbe-associated postprandial metabolite alterations driven by a single 
fast food meal equivalent. To achieve this we performed untargeted 
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metabolomics in postprandial portal (i.e., the blood draining the gut) and 
peripheral plasma samples in mice either treated with or without broad 
spectrum antibiotics. The plasma untargeted metabolomics data in 
negative (Figure 3) and positive (Supplementary Figure S2) ESI modes 
were organized in eight distinct groups characterized by site of blood 
collection (portal versus peripheral), administration of control versus 
antibiotic water, and chow versus fast food meal gavage (Figure 3A). 
MetaboLyzer [20] was used to perform a single two-way comparison 
between portal plasma from chow- versus fast food-gavaged mice with an 
intact gut microbiome (non-antibiotic treated). Principal component 
analysis demonstrated strong separation between groups in both the 
negative (Figure 3B) and positive (Supplementary Figure S2B) ESI modes. 
KEGG pathway analysis identified differences in putative metabolites 
related to unsaturated fatty acid biosynthesis and arachidonic acid 
metabolism, as well as amino acid metabolism in the negative ESI mode 
(Figure 3C). A parallel analysis of positive ESI mode ions corroborated the 
significant difference in putative lipid biosynthesis metabolites resulting 
from the fast food meal (Supplementary Figure S2C). 

In a separate analysis using an in-house developed algorithm 
(Supplementary File S3), several two-group analyses were performed 
simultaneously in an attempt to focus on fast food-driven metabolites that 
also have gut microbe-associated patterns i.e., metabolites that were 
simultaneously enriched in portal blood, suppressed by antibiotic, and 
altered by fast food feeding (Figure 3D). In the negative ESI mode, 3829 
ions met the presence-threshold with greater than 50% of samples 
reporting a non-zero value and were subsequently analyzed. Multiple two-
way comparisons were made to identify ions of significantly greater 
intensity within the portal blood of control water fast food-gavaged mice 
when compared to each of the following: portal blood of control water 
chow-gavaged mice, portal blood of all antibiotic water treated mice, and 
all peripheral blood samples (Figure 3E–G, comparison bars). Overall, 463 
ions met all criteria, including 138 with putative database identifications 
(Figure 3D). All 463 ions were scored based on the fold-change differences 
between groups of each comparison to rank their fitness of the multiple 
criteria listed. The ion with reported mass-to-charge ratio_retention time 
(m/z_RT) of 423.2919_11.3959 was highly scored and later structurally 
confirmed to be 18:0 LPA (Figure 3E). Many other putatively identified 
(Figure 3F) and unidentified (Figure 3G) ions were also highly scored and fit 
the multiple criteria well (Supplementary Figure S2E–G). A parallel analysis 
was performed for the positive ESI mode (Supplementary Figure S2), and 
many additional highly scored ions closely following a dual fast food-driven 
gut microbe-associated pattern were identified. Data and results generated 
from both negative and positive ESI modes are available in Supplementary 
File S1. Remarkably, in the negative ESI mode, nearly all (1903 out of 1991) 
metabolites that were significantly higher in portal versus peripheral blood 
were also significantly higher in the portal blood of control water versus 
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antibiotic water (Figure 3D). In other words, nearly all portal-blood enriched 
metabolites were gut-microbe dependent. This demonstrates the immense 
importance of the gut microbiome to the portal vein niche, and also the 
importance of portal blood collection in study of the gut microbiome. 

 

Figure 3. A Single Fast Food Meal Alters the Portal Blood Metabolome in a Gut Microbe-Dependent Manner. 
(A) 6-week old male C57BL6/J mice were randomly assigned to control drinking water or drinking water 
supplemented with broad spectrum antibiotics for two weeks. Following an overnight fast, mice were given a 
single oral gavage of either chow slurry or fast food slurry and sacrificed exactly 4 h later. Portal and peripheral 
blood were taken for plasma and LCMS-based untargeted metabolomics was performed in the negative ESI mode. 
(B) PCA and (C) KEGG pathway analysis of portal blood from chow versus fast food gavage of control water mice 
generated using MetaboLyzer. (D) Multiple two-group comparisons were made to identify ions enriched within 
the portal blood that were greater in the control water, fast food gavage group. 463 ions satisfy all criteria. (E) 
The comparison tests performed are shown with overlying horizontal comparison bars. Ion mass 
charge_retention time (m/z_RT) 423.2819_11.3959 satisfied all criteria and was structurally validated as 18:0 LPA. 
(F) Ion m/z_RT 473.9567_1.7013 satisfies all criteria and is putatively identified as adenosine 5’phosphoselenate. 
(G) Ion m/z_RT 342.1424_3.0209 satisfies all criteria but does not have a putative identification. *q < 0.10 (Mann-
Whitney U test). Con = control; Abx = antibiotics. n = 4–7 per group. 
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Figure 3. Cont. 

A Single Fast Food Meal Alters the Hepatic Metabolome in a Gut 
Microbe-Dependent Manner 

To understand diet-microbe-host driven alterations in the hepatic 
metabolome, we performed a quantitative targeted metabolomic panel in 
livers isolated 4 h after a fast food meal. This targeted assay included 
structurally diverse metabolite classes including amino acids, biogenic 
amines, monosaccharides, glycerophospholipids, and neutral lipids. We 
generated heatmap plots to highlight metabolite differences between 
livers from chow and fast food meal gavage groups of mice with an intact 
microbiome (Figure 4A left side). These differences were not maintained 
in mice that had their microbiota ablated by prior administration of 
antibiotics in the drinking water (Figure 4A right side), implicating the role 
of an intact gut microbial metabolism on a meal-specific liver metabolome. 
When considering the top 50 differentially detected liver metabolites 
across gut microbiome status within the chow-gavaged group 
(Supplementary Figure S3A left side), some of these differences were 
maintained in fast food-gavaged mice (Supplementary Figure S3A right 
side). Similarly, differences across the gut microbiome status within the 
fast food-gavaged group (Supplementary Figure 3B left side) were only 
slightly maintained in chow-gavaged mice (Supplementary Figure S3B 
right side). Taken together, this suggests that antibiotic-mediated 
differences in the hepatic metabolome were present in both chow and fast 
food meal groups, though the particular differences were diet-specific. 
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Figure 4. A Single Fast Food Meal Alters the Hepatic Metabolome in a Gut Microbe-Dependent Manner. 
6-week old male C57BL6/J mice were randomly assigned to control drinking water or drinking water 
supplemented with broad spectrum antibiotics for two weeks. Following an overnight fast, mice were given 
a single oral gavage of either chow slurry or fast food slurry and the liver was harvested exactly 4 h later 
for targeted metabolomics. (A) Heatmap of the top 50 differentially expressed molecules within drinking 
water type, across diet. Groups listed above with samples contained within columns; row metabolite 
identification listed on left; z-score normalized values scaled by row (red = increase, blue = decrease, black 
= missing value or excluded outlier). (B) AC(18:1) and AC(18:2) demonstrate diet-driven changes in both 
control and antibiotic-treated mice. (C) PC(32:1) and AC(2:0) demonstrate antibiotic-driven changes in both 
chow and fast food diet gavage mice. (D) Spermidine and the hexose monosaccharides have dual diet- and 
antibiotic-driven changes, appearing highest in the fast food diet control water group. *q < 0.15, **q < 0.05 
(Mann-Whitney U test). Abx = antibiotics; H1 = hexose monosaccharides; Cer = ceramide; PC = 
phosphatidylcholine; CE = cholesteryl ester; SM, sphingomyelin; AC = acylcarnitine; LPC = 
lysophosphatidylcholine; alpha-AAA = alpha-aminoadipic acid. n = 6–7 per group. 
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Figure 4. Cont. 

Additional comparisons across meals and microbiome status identified 
commonly occurring molecules that warrant further investigation. For 
example, the 18:1 and 18:2 acylcarnitine species vary significantly across 
meals, irrespective of an intact microbiome (Figure 4B). When comparing 
across gut microbiome status, 32:1 phosphatidylcholine and 2:0 
acylcarnitine (Figure 4C), and triglycerides (Supplementary Figure S4) 
vary significantly for both meal types. Analogous to our plasma untargeted 
metabolomics analysis above (Figure 3D), metabolites dually dependent 
on fast food and the microbiome were sought after. Spermidine, an 
aliphatic polyamine compound, and the hexose monosaccharides 
demonstrated dual diet- and microbiome-driven changes, appearing 
highest in the control water fast food-gavaged group (Figure 4D). Together, 
this suggests that gut microbiome status has a larger influence on liver 
metabolites than meal type. 

A Single Fast Food Meal Rapidly Alters Hepatic Gene Expression in a 
Gut Microbe-Dependent Manner 

Given the marked portal blood metabolite signatures as well as the 
unique diet- and gut microbiota-dependent hepatic metabolome changes, 
we next aimed to understand the potential impact of a human relevant 
fast food meal on the host. We used an unbiased RNA sequencing approach 
to profile acute postprandial transcriptomic changes within the liver 
(Figure 5). Distinct diet- and gut microbiota-dependent clustering was 
apparent after NMDS analysis (Figure 5A). For mice with an intact gut 
microbiome, there were notable differences between the hepatic 
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transcriptome of chow-gavaged and fast food-gavaged mice (Figure 5B). 
Importantly, these unique profiles were not retained in the microbiome 
ablated cohort suggesting a strong gut microbial dependency (Figure 5B–D), 
in agreement with the liver metabolomics results (Figure 4A). We 
observed an upregulation of Fmo3 encoding the enzyme responsible for 
conversion of TMA to TMAO in fast food fed mice on control drinking 
water, which could be related to the red meat component of fast food [8–
10]. Pathway analysis revealed a surprising fast food-induced 
dysregulation of circadian rhythmicity associated genes (Figure 5E). These 
data were further corroborated using RT-qPCR where it was observed that 
the relative mRNA expression of Cryptochrome 1 (Cry1), a key repressor 
of the core circadian oscillator complex (Figure 5F) and Circadian 
Associated Repressor of Transcription (Ciart), a core clock-independent 
repressor (Figure 5G) are markedly upregulated upon consumption of a 
fast food meal in mice harboring an intact gut microbiome. Importantly, 
the transcriptional upregulation of these core clock dependent and 
independent circadian repressors was not observed in mice who 
consumed a fast food meal with an antibiotic ablated microbiome. Taken 
together, these data reveal rapid postprandial hepatic transcriptional 
changes that are strongly dependent on the diet with a possible gut 
microbial contribution.  

The complex relationship between diet composition and the gut 
microbiome is an attractive target in the study of metabolic syndrome 
(MetS) and cardiovascular disease. Unfortunately, the vast majority of 
animal studies in this area study cardiometabolic phenotypes in the 
context of diets that have no relevance to what humans actually eat. For 
example, rodent chow is not standardized and changes according to raw 
materials available for animal food production, which changes seasonally. 
Even carefully formulated synthetic rodent diets such as the chemically-
defined chow used here, or popular high fat or Western diets, do not 
accurately mimic the micronutrient and macronutrient content of 
common human diets. To overcome this, we instead provided a single 
human relevant fast food meal to mice with or without antibiotic-
mediated suppression of the gut microbiome to understand the meta-
organismal metabolomic signatures that arise after fast food dietary 
substrates are presented. The main findings of this study demonstrate that 
consumption of a single fast food meal: (1) rapidly alters the gut 
microbiome in a way that is not predicted by the microbes present in the 
fast food meal, (2) rapidly alters the portal and peripheral plasma 
metabolome in a microbiome-dependent manner, (3) rapidly alters the 
host hepatic transcriptome and metabolome in a microbiome-dependent 
manner, and (4) rapidly alters the expression of hepatic genes related to 
circadian dysregulation in a microbiome-dependent manner. Collectively, 
these data provide a glimpse into microbe-host interactions when relevant 
dietary substrates are provided, and bolster the concept that many host 
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transcriptional and metabolic alterations fueled by consumption of fast 
food are shaped by the gut microbial endocrine organ [51]. 

 

 

Figure 5. A Single Fast Food Meal Rapidly Alters Hepatic Gene Expression in a Gut Microbe-Dependent 
Manner. 6-week old male C57BL6/J mice were randomly assigned to control drinking water or drinking 
water supplemented with broad spectrum antibiotics for two weeks. Following an overnight fast, mice were 
given a single oral gavage of either chow slurry or fast food slurry and the liver was harvested exactly 4 
hours later for bulk RNA sequencing. (A) NMDS of RNA-Seq transcriptome data representing the hepatic 
gene expression signature of the top 500 differentially expressed transcripts as sorted by log2 fold change 
between chow (blue) and fast food (red) in the absence (filled dots) or presence (hollow dots) of antibiotics. 
The NMDS was performed using DESeq2 normalized counts. (B) Heatmap of hierarchically clustered 
differentially expressed genes arranged by adjusted p-value and log2 fold change. Z-score normalized values 
scaled by row. (C) Volcano plot of RNA-Seq transcriptome data representing hepatic gene expression 
signature of chow control water mice to fast food control water mice. (D) Volcano plot of RNA-Seq 
transcriptome data representing hepatic gene expression signature of chow antibiotic water mice to fast 
food antibiotic water mice. Genes highlighted in red correspond to those that are significantly differentially 
expressed (adjusted p < 0.001) with a log2 fold change >1.5. (E) Parent gene ontology assignments of the top 
150 differentially expressed genes as sorted by adjusted p-value between chow control water and fast food 
control water mice. n = 4 per group for all RNASeq analysis. (F–G) qPCR validation of differentially expressed 
circadian repressor genes revealed by RNA-Seq. Statistical analysis of qPCR data was performed using a two-
way ANOVA with Tukey’s multiple comparison test where * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. 
n = 6–7 for all qPCR analysis. Abx = antibiotics; NS = not significant; FC = fold change. 
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DISCUSSION 

The past decade has seen an explosion of research associating the 
relative abundance of gut microbes to human disease, relying on classic 
16S ribosomal RNA approaches or more recently by metagenomic deep 
sequencing. Large collaborative microbiome-focused research consortia 
have leveraged such methodology to catalogue the types of bacteria 
resident in the human intestine, and have shown that gut microbiome 
structure can be dynamically altered by several variables including diet, 
age, host genetics, and antibiotic exposure [52–54]. Among all of the 
environmental factors that impact gut microbiome structure, diet is 
clearly a major determinant shaping community structure and function 
[41–43]. Although it is well appreciated that diet can profoundly alter the 
gut microbiome, most studies to this point have focused on effects that 
occur after days or weeks on dietary intervention. Here, we show that a 
single human-relevant fast food meal can rapidly reorganize gut 
microbiome communities in mice. Strikingly, just 4 h after fast food 
consumption, gut microbiome shifts were observed that were largely 
independent of the microbial sequences that originated from the diets 
(Figure 2). For example, commensal food-associated bacteria such as 
Lactobacillus, Lactococcus, and Streptococcus were the most abundant 
genera in the fast food meal itself, yet these taxa did not contribute to 
remarkable shifts in the cecal microbiota of fast food gavaged mice. This 
highlights that the shifts in cecal microbiome composition are in response 
to dietary constituents rather than caused by background microbes that 
were present in the food. Although some of the observed differences in gut 
microbial community composition are consistent with previous findings, 
such as the negative association of Turicibacter with high-fat feeding [55–
57] or positive association of Enterococcus with obesity [58], these data 
should be cautiously interpreted due to their correlative and often 
discrepant nature [59]. In mice with an intact gut microbiome (that were 
receiving control drinking water prior to gavage), the administration of a 
fast food gavage led to changes in cecal microbial content, with notable 
increases in the pathobiont Enterococcus and Parasutterella, while the 
opposite was seen in antibiotic water treated groups. Interestingly, a 
striking increase in Burkholderia/Paraburkholderia was observed in the 
fast food antibiotic water group, likely due to the proliferation of 
antibiotic-resistant colonizers. These data, coupled with many other 
recent published reports, support the notion that a single meal can have 
profound effects gut microbiome community structure [60,61]. 

It is clear that consumption of key dietary substrates can shape the 
types of bacteria that are present in the intestine, but less is understood 
about the complex interplay between dietary substrate availability, gut 
microbe-derived metabolite production, and downstream co-metabolism 
driven by the host. The use of LCMS-based metabolomics has become a 
powerful tool in the study of human health and disease, particularly in 
identifying meta-organismal nutrient metabolism pathways [62–66]. Here 
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we used an untargeted metabolomics platform as an unbiased approach 
to identify gut microbe-derived metabolites that are produced 
postprandially after a human-relevant fast food meal. We focused our 
efforts on postprandial metabolites that were enriched in the portal 
circulation, given that many microbe-derived metabolites are rapidly 
converted to secondary metabolites in the host liver. The untargeted 
metabolomics platform we used here is only able to structurally predict 
<10% of the metabolites detected, and further structural validation is 
needed for each putative spectral feature in the dataset. To aid with future 
investigation of diet-microbe-host metabolomic data, we have generated a 
computer program using Python coding language to perform multigroup 
analyses and identify metabolites meeting a particular distribution profile 
(Supplementary File S3). Multiple criteria were fed into this program to 
identify fast food-altered and gut microbe-dependent metabolites (Figure 
3D-G). Although we were not able to structurally identify all microbiota-
associated fast food-driven metabolites, we did confirm one such 
metabolite as 18:0 lysophosphatidic acid (LPA) which increases 
preferentially in the portal blood of mice provided fast food substrate, yet 
this fast food-induced spike is suppressed by antibiotic treatment (Figure 
3E). The results shown for 18:0 LPA are consistent with its 
pharmacokinetic profile of undergoing rapid first-pass hepatic 
metabolism [67]. Interestingly, 18:0 LPA has previously been associated 
with liver dysfunction and cardiovascular disease [68,69]. A number of 
other putatively identified metabolites were found to match this 
distribution profile, and their information listed in Supplementary File S1. 
Although beyond the scope of this work, further structural identification 
of other fast food-derived gut microbial metabolites identified here has the 
potential to provide new links between fast food, the gut microbial 
endocrine organ, and human disease.   

In addition to performing untargeted metabolomics in the circulation, 
we also set out to understand the transcriptomic and metabolomic 
alterations driven by a fast food meal in the host liver. Quantitative 
targeted metabolomics was performed to detect molecular species of key 
metabolite classes including amino acids, biogenic amines, carbohydrates, 
acyl-carnitines, polar lipids, and neutral lipids. The diet- and antibiotic-
driven liver lipid profiles (Supplementary Figure S4) and liver metabolite 
profiles (Figure 4) varied significantly between meal type just four hours 
after gavage, though a larger effect was seen as a result of antibiotic 
administration (Supplementary Figure S3). Spermidine levels varied both 
in a diet- and microbe-dependent manner, appearing highest in livers of 
the control water fast food group. Spermidine is an aliphatic polyamine 
compound that is obtained from diet, synthesized endogenously, or 
produced by intestinal bacteria [70] and has been associated with a 
number of positive physiologic effects such as increasing lifespan as well 
as negative pathologic effects such as tumorigenesis [71,72]. Its expression 
pattern, appearing higher in fast food mice with an intact microbiome 
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compared to their antibiotic treated counterparts, implicates the induction 
of host de novo biogenesis or alterations of spermidine-producing gut 
microbes in response to a fast food meal. 

In an effort to determine the putative impact of these portal blood and 
hepatic metabolites on the host, an unbiased RNA-sequencing approach 
was used to profile the liver transcriptome. In the control water groups, 
there was a marked difference in gene expression between meal types 
(Figure 5B left side), though these diet-driven changes were not seen in the 
antibiotic water groups (Figure 5B right side), implicating the gut 
microbiome in diet-driven host transcriptional changes. This pattern was 
congruent with the liver metabolomics results (Figure 4A left side, 4A right 
side ), further supporting a possible gut microbial contribution. The 
expression of flavin-containing monooxygenase 3 (Fmo3), encoding the 
enzyme responsible for converting gut microbe-derived trimethylamine 
(TMA) to its heart disease-associated co-metabolite trimethylamine-N-
oxide (TMAO), was found to be higher in the fast food group compared to 
chow group of mice with an intact microbiome. As expected, the fast food 
meal did not promote an increase in Fmo3 expression in the antibiotic 
treated groups. This is yet another example whereby the expression of 
Fmo3 is altered in mouse models of progressive cardiometabolic disease 
[73–76]. Of note, consumption of a fast food meal promoted hepatic 
transcription of several circadian repressors, but only in mice with an 
intact gut microbial community (Figure 5B,E–G). These data coincide with 
the collective understanding that diet can influence circadian rhythmicity 
and in the case of high fat and Western diets, cause marked disruption of 
circadian oscillatory programs [77–79]. Moreover, the gut microbial 
contribution to host circadian rhythmicity and metabolism has been 
established in recent years, underscoring the complexity of microbe-host 
interactions [80,81]. Collectively, this study utilized a multi-omics 
approach to study the interrelationship between varying diets and the gut 
microbiome to gain novel insights toward MetS and cardiovascular 
disease. The multi-omic data generated here can be used as a lens to focus 
further investigation into mechanisms by which fast food diets promote 
cardiometabolic disease.  

CONCLUSIONS 

Herein, we have leveraged a multi-omics approach to identify 
microbial metabolites produced postprandially from a single fast food 
meal. This approach differs from conventional rodent models of MetS by 
introducing a single meal equivalent that more closely recapitulates a 
human Western diet. Leveraging tools such as 16S rRNA gene sequencing, 
untargeted and targeted metabolomics, and host RNA sequencing, we 
uncovered distinct diet- and gut microbe-dependent metabolites and their 
associated impact on the hepatic transcriptome. Important to note, 
limitations of this study include but are not limited to the fact that 
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antibiotic ablation does not completely eliminate the gut bacterial 
community and has been reported to reduce dietary lipid absorption in 
rats and mice [82,83]. The use of germ-free mice would offer a more 
rigorous method to study the microbial aspect in terms of metabolites and 
ruling out hepatic transcriptional changes due to the antibiotics 
themselves. However, there are caveats to using germ-free mice, as they 
are known to have underdeveloped immune systems [84–86]. Moreover, 
studying the mouse microbiome with human relevant diet is limiting and 
it may be more appropriate to study a mouse colonized with a human 
derived microbiome, although this approach has its own limitations [84]. 
Finally, murine fat metabolism differs from the human condition such that 
mice lack cholesterol ester transfer protein (CETP) and have divergent 
lipoprotein profiles compared to humans, potentially limiting the 
translational relevance of the findings reported herein. Our data suggest 
that following the consumption of a single human-relevant fast food meal, 
unique diet- and gut microbe-dependent metabolites are detected in 
addition to rapid transcriptional reprogramming of the liver. Further 
investigation is warranted to determine if these metabolites are causally 
linked to host transcriptional changes and the development or progression 
of MetS. 
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