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ABSTRACT 

Erythrocytes (red blood cells) interact with both the immune and the 
metabolic systems. However, emerging data indicate that they can also 
function as mediators in immunometabolic interactions. High-fat diet 
results in increased erythrocyte cholesterol, externalized 
phosphatidylserine, bound MCP1, myeloperoxidase and the generation of 
reactive oxygen species. As a result, a pro-inflammatory effect of the 
erythrocyte ensues subsequently triggering macrophage inflammation, 
chemotaxis, erythrophagocytosis and endothelial activation. 
Furthermore, as a consequence of metabolic syndrome or obesity, 
important immunoregulatory molecules of erythrocytes, such as CD47, 
Glycophorin A and microvesicles are affected. Finally, 
inflammation-induced lipid remodelling of erythrocytes possibly 
partakes in a positive feedback loop with inflammation. These studies 
strongly indicate that erythrocytes contribute to the immunometabolic 
cross-talk, mainly by linking the systemic metabolic status with innate 
immunity and inflammation. Further exploration of the implicated 
mechanisms could lead to potent therapeutic targets for 
metaflammation-related diseases. 
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ABBREVIATIONS 

ASMase, acid sphingomyelinase; DARC, duffy antigen receptor for 
chemokines; GYPA, glycophorin A; HDL, high-density lipoprotein; MCP1, 
monocyte chemoattractant protein 1; MGF-E8, milk fat globule-EGF factor 
8 protein; MPO, myeloperoxidase; PSer, phosphatidylserine, RBC, red 
blood cell; ROS, reactive oxygen species; SM, sphingomyelin; TNF-α, 
tumor necrosis factor α  

INTRODUCTION 

Erythrocytes (red blood cells) interact with both the systemic 
metabolism and the immune function [1]. Through various surface 
molecules, red blood cells scavenge chemokines, mitochondrial DNA and 
regulate the functional phenotypes of dendritic cells, T cells, neutrophils 
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and monocytes. In addition, they are important mediators of reverse 
cholesterol transport and a source of Damage-Associated Molecular 
Patterns, bioactive lipids and cytokines in the blood [1]. For instance, they 
are the main source of an important immunoregulatory lipid, that is 
sphingosine 1-phosphate [2] that is produced in response to various 
stimuli [3,4]. These characteristics possibly imply that red blood cells 
could also mediate interactions between the metabolic and the immune 
systems, an intersected network known as immunometabolism [5]. The 
contribution of erythrocytes in the systemic metabolism, the immune 
function, and the production of potent immunoregulatory metabolites 
has already been described [1,6]. However, a potential direct connection 
of immunometabolism through erythrocytes has not been taken into 
account. In this perspective, we attempt to elucidate the fact that red 
blood cells are important cellular mediators of immunometabolic 
signaling, and postulate novel mechanisms (Figure 1). This is of 
particular significance, since the role of red blood cells is often 
overlooked in studies investigating immunometabolism. 

 

Figure 1. High-fat diet induces a transition to the immunoregulatory function of erythrocytes, which then 
act as bidirectional mediators between immune function and metabolism. This figure was created using 
Servier Medical Art templates, which are licensed under a Creative Commons Attribution 3.0 Unported 
License; https://smart.servier.com. 
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ERYTHROCYTES LINK SYSTEMIC METABOLISM WITH IMMUNE 
FUNCTION 

The most substantial study regarding the role of red blood cells in 
connecting systemic metabolism with immune function comes from 
Unruh et al. [7]. In their study, erythrocytes of mice fed a high-fat diet for 
12 weeks, ultimately came up with high content of membrane cholesterol, 
externalized phosphatidylserine, high levels of markers of reactive 
oxygen species (ROS) and bound Monocyte Chemoattractant Protein 1 
(MCP1). In addition, erythrocytes of these animals induced macrophage 
chemotaxis in ex vivo experiments. This effect was less profound in 
high-fat diet-fed mice lacking Duffy Antigen Receptor for Chemokines 
(DARC). Thus, those findings could be attributed to the release of MCP1 by 
DARC. Unruh et al. [7], also reported endothelial activation induced by 
erythrocytes of high-fat diet animals. Heme and/or hemoglobin release 
could possibly have been the cause of this effect, as these agents are 
known to induce the expression of adhesion molecules and bring about 
cytoskeleton organization in endothelial cells [8,9]. Furthermore, red 
blood cells from high-fat diet mice augmented erythrophagocytosis by 
splenic macrophages, an effect accompanied by increased transcription 
levels of pro-inflammatory chemokines [7]. Similar results have been 
reported by Otogawa et al. [10]. In that study, high-fat diet-induced 
steatohepatitis triggered erythrocyte phosphatidylserine exposure, 
resulting in erythrocyte accumulation in the liver through 
phosphatidylserine and MGF-E8 interaction, erythrophagocytosis by 
Kupffer cells, and augmentation of inflammation and fibrosis. This latter 
effect was linked to increased iron accumulation in the Kupffer cells. 
However, based on the results of Unruh et al. [7], cholesterol 
accumulation could also contribute to this effect [11].  

Studies in humans further unveil the pro-inflammatory role of red 
blood cells in the context of abnormal systemic metabolism. Benson et al. 
[12], showed that consumption of a high-fat meal by healthy humans, 
increased erythrocyte ROS and erythrocyte bound myeloperoxidase 
(MPO). This correlated with oxidation of high-density lipoprotein [HDL]. 
In obese individuals, increased erythrocyte phosphatidylserine exposure 
has been reported [13], a mechanism previously described to enhance 
hepatic inflammation and fibrosis. In addition, obesity results in loss of 
CD47 from erythrocyte membranes [14]. Through this molecule red blood 
cells can regulate the maturation of and the cytokine profile released 
from dendritic cells [15,16]. Thus, the relation between obesity and 
erythrocyte CD47 certainly merits further exploration. Furthermore, in 
patients with metabolic syndrome, erythrocytes present lower 
Glycophorin A levels [17] and increased production of extracellular 
vesicles [18]. Since Glycophorin A regulates neutrophil activation [19], 
and erythrocyte-derived microvesicles affect monocyte activation [20,21] 
we propose that investigation of their active role in the sub-clinical 
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inflammation observed during metabolic syndrome and obesity could 
unveil novel therapeutic targets. 

More recently, a study by Hazegh et al. [22] provided important cues 
for the molecular basis of obesity-induced erythrocyte metabolic changes. 
In their study, they found that obesity of blood transfusion donors was 
associated with storage, osmotic and oxidative hemolysis. Furthermore, 
blood donors with high BMI (44.1 ± 5.1 kg/m2) had increased erythrocyte 
lysophosphatidylinositol, lysophosphatidylserine, short-chain fatty acids 
and oxidative markers, Changes in the amino acid metabolism were also 
observed, with arginine, tryptophane and kynurenine (oxidized product 
of tryptophane), being higher in obese individuals. Additional 
investigation in mice, showed that donor obesity correlated with lower 
percentage of post-transfusion recovery. Hence, the role of the abnormal 
red blood cell metabolome should be investigated with regards to 
immune function.  

The role of red blood cells in immunometabolism could be applicable 
not only to inflammation and fibrosis, but to immunothrombosis too. 
Externalized phosphatidylserine of erythrocytes binds pro-thrombinase 
and induces thrombin formation [23]. Exposure of phosphatidylserine in 
erythrocytes, and subsequent thrombin activation is also triggered by 
extracellular histones [24] that are important constituents of 
immunothrombosis. However, to what extent obesity- and 
immunothrombosis-induced phosphatidylserine exposure have an 
additive effect certainly needs further investigation.  

ERYTHROCYTE LIPID METABOLISM PROVIDES POSITIVE FEEDBACK 
TO INFLAMMATION 

Inflammation-induced lipid metabolism in erythrocytes could amplify 
the immune reaction to sterile inflammation. Increased serum 
sphingomyelinase levels induced by inflammation trigger ceramide 
formation, which can then induce phosphatidylserine exposure and 
microvesicle release from erythrocytes [25]. Interestingly, our 
unpublished results show an inverse correlation between sphingomyelin 
content and CCL2 release from red blood cells, in the context of 
non-alcoholic fatty liver disease. Conditioned-media from these 
erythrocytes provoked an increased release of TNF-α by RAW 264.7 
macrophages. This latter function could be attributed to MCP1 [26]. In 
addition, MCP1 release by erythrocytes could be attributed to 
microvesicle release [27], which are formed by sphingomyelin hydrolysis 
[25]. Thus, a pathway comprised of sphingomyelin 
hydrolysis-microvesicle release-MCP1 release, similar to that described 
for glial cells and IL-1β [28], is possible for the case of red blood cells, but 
merits further exploration.  
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CONCLUSIONS 

Red blood cells participate in immunometabolism. Their 
immunoregulatory molecules, such as CD47, Glycophorin A, 
phosphatidylserine, DARC, membrane bound MPO and the positive 
feedback loop between inflammation and erythrocyte lipid metabolism, 
should be revisited in the future as potent therapeutic targets of 
immunometabolic diseases, such as atherosclerosis, metabolic fatty liver 
disease and obesity. 
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