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ABSTRACT 

Targeting glycolysis in T helper 17 (Th17) cells presents an attractive 
opportunity to treat Th17 cell-mediated autoimmune diseases such as 
multiple sclerosis (MS). Pyruvate kinase isoform 2 (PKM2) is a glycolytic 
enzyme expressed in T cells infiltrating the central nervous system in a 
mouse model of MS, suggesting PKM2 modulation could provide a new 
avenue for MS therapeutics. In a recent article in Science Signaling, Seki et al. 
show that pharmacological modulation of PKM2 alters but does not 
ameliorate disease in a mouse model of MS. These results warrant further 
consideration of PKM2 modulators to treat Th17 cell-mediated 
autoimmunity. 
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ABBREVIATIONS 

Th17, T helper 17; MS, multiple sclerosis; EAE, experimental autoimmune 
encephalomyelitis PKM2, pyruvate kinase isoform 2; TCR, T cell receptor; 
KO, knockout; MOG, myelin oligodendrocyte glycoprotein 

In multiple sclerosis (MS), autoreactive T cells infiltrate the central 
nervous system and mount a damaging immune response against myelin, 
leading to severely debilitating neurological symptoms [1,2]. A central role 
for T helper 17 (Th17) cells, a subset of CD4+ T cells, in MS pathogenesis is 
supported by a combination of human genetic and clinical evidence, as 
well as data from the experimental autoimmune encephalomyelitis (EAE) 
mouse model of MS [1,3]. Th17 cells rely on a coordinated network of 
transcription factors to regulate development and function [4,5]. Multiple 
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lines of evidence have demonstrated that therapeutically targeting many 
of these transcription factors is feasible and effective, supporting the 
rationale for targeting Th17 cells to treat MS [6–8]. 

Recent work has focused on identifying features unique to pathogenic 
vs homeostatic Th17 cells that could be exploited for therapeutic 
benefit [9]. One such characteristic is the altered metabolic profile of 
pathogenic Th17 cells [10]. Driven by key regulators of aerobic glycolysis, 
including mTORC, pathogenic Th17 cells exhibit increased glycolysis, 
which may drive inflammation by facilitating elevated protein, lipid, and 
nucleic acid synthesis necessary for increased proliferation and pro-
inflammatory cytokine production [11,12]. These data suggest that 
therapeutics targeting glycolytic pathways could be effective treatments 
for Th17 cell-mediated autoimmune diseases [7]. Indeed, genetic ablation 
or pharmacological inhibition of glycolytic enzymes protects against 
disease in EAE [7,13].  

Specifically targeting glycolysis in pathogenic Th17 cells while 
minimizing effects on other cell types [9] is challenging given glycolysis is 
essential in most cells [14]. Excitingly, recent evidence suggests the 
glycolytic enzyme pyruvate kinase could provide a means to selectively 
target glycolysis in T cells [15]. Alternative splicing dictates cell type-
specific expression of isoforms including pyruvate kinase isoform 1 
(PKM1) and pyruvate kinase isoform 2 (PKM2) [16]. PKM1 exhibits robust 
enzymatic activity to provide pyruvate necessary for oxidative 
phosphorylation and ATP production in terminally differentiated 
cells [17]. In contrast, PKM2 is enzymatically less active and instead 
functions as a transcriptional coactivator, allowing for shunting of 
glycolytic intermediates to anabolic pathways [18,19]. Notably, T cells 
exclusively express PKM2, suggesting pharmacological modulation of 
PKM2 could provide the means to target T cell glycolysis with greater 
selectivity [15].  

In a recent article in Science Signaling, Seki et al. explored the effect of 
the PKM2 activators, TEPP-46 and DASA-58, on Th17 cell activity in vitro 
and in vivo [20]. TEPP-46 and DASA-58 have been designed to enhance the 
enzymatic activity of PKM2 so that it functions more like PKM1 [21,22]. 
Pharmacological PKM2 activation should divert metabolic intermediates 
toward catabolic processes and ATP production in lieu of anabolic 
processes and proliferation [23], which would be expected to inhibit pro-
inflammatory T cell activity.  

Consistent with previous reports [15], the authors found PKM2, but not 
PKM1, is upregulated following T cell receptor (TCR) activation in CD4+ T 
cells cultured under Th17-skewing conditions. In macrophages, which also 
exclusively express PKM2, TEPP-46 and DASA-58 treatment inhibited a 
pro-inflammatory phenotype [24]. Similarly, PKM2 activator treatment 
was previously shown to inhibit pro-inflammatory cytokine production by 
Th17 cells in vitro and in vivo [15]. These data align with that presented by 
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Seki et al., in which PKM2 activators inhibited production of the signature 
pro-inflammatory Th17 cell cytokine IL-17A. 

Although the inhibition of IL-17A is congruent with previous studies, 
Seki et al. uniquely observed increased pro-inflammatory cytokines IFNγ 
and GM-CSF and no significant effects on glycolysis or oxygen 
consumption with PKM2 activator treatment. While this discrepancy could 
be due to the earlier timepoint analyzed, another explanation is that Seki 
et al. used total CD4+ T cells, a more heterogenous mixture of naïve and 
memory cells, while the previous study enriched for naïve CD4+ T cells. 
This is significant in light of data showing PKM2 activators inhibit TCR 
activation [15]. Memory cells may exhibit fewer defects in activation in the 
presence of PKM2 activators, resulting in a different cytokine and 
metabolic response. Future studies directly comparing memory vs naïve 
cell responses to PKM2 activator treatment are needed to confirm this 
possibility. This issue will be critical to address considering therapeutics 
for autoimmune diseases are administered after disease onset (i.e., 
affecting memory cells), not as preventative treatments (i.e., affecting 
naïve cells).  

Data by Seki et al. also raises concerns regarding the specificity of PKM2 
activators. PKM2 activator treatment of PKM2 conditional knockout (KO) 
T cells produced a similar increase in GM-CSF and decrease in IL-17A 
expression as treatment of WT T cells. Further investigation revealed 
compensatory upregulation of PKM1 in PKM2 KO Th17 cells. Although 
PKM2 activators were previously shown to exhibit high selectively for 
PKM2 vs PKM1 [21], a clickable TEPP-46 analogue pulled down both PKM2 
and PKM1 from Jurkat T cell lysates, challenging the notion that TEPP-46 
activity is specific to PKM2 (Figure 1). These results suggest small 
molecules thought to be PKM2-specific can also exhibit off-target effects 
on PKM1 that may operate independently of PKM1 enzymatic activity. This 
finding could explain why, in a separate, study, the use of a PKM2 
inhibitor, shikonin, significantly reduced Th17 cell differentiation and the 
development of EAE [25]. Compounds affecting the activity of both PKM1 
and PKM2 (TEPP-46) could be expected to have different readouts than a 
compound that is reported to have activity at PKM2 only (shikonin) [26]. 
Finally, it is interesting to note that the compensatory upregulation of 
PKM1 in PKM2 KO Th17 cells was also reported in NK cells [27]. These data 
beg the question: are there truly compensatory mechanisms at play in the 
absence of PKM2, or is the deletion of the PKM2 exon 9 resulting in 
artefactual expression of the PKM1-specific exon 10? These concerns 
require further investigation, including different strategies to assess PKM2 
activity in Th17 cells.  

Concerns over lack of specificity raised by the PKM2 KO mice are 
significant in light of the experimental procedures previously used to 
show PKM2 activators inhibit Th17 cell-mediated autoimmune disease in 
vivo. In the previous study, which used an active EAE induction model, 
mice were treated with TEPP-46 post-immunization to determine the effect 
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on disease progression [15]. This method contrasts with the passive EAE 
disease induction procedure used by Seki et al., in which myelin 
oligodendrocyte glycoprotein (MOG)-specific TCR transgenic 2D2 cells 
were cultured under Th17-skewing conditions in the presence of TEPP-46 
before transferring to Rag1−/− recipients. The latter method ensures effects 
on disease progression are exclusive to modulation of Th17 cells, while in 
the former system, it cannot be concluded whether amelioration of disease 
is specific to modulation of Th17 cells or any other cell type, since drug 
exposure is systemic.  

 

Figure 1. Effects of TEPP-46 treatment on WT and PKM2 KO Th17 cells based on data from Seki et al. TEPP-
46 is thought to enhance conversion of phosphoenolpyruvate (PEP) to pyruvate by PKM2 in the final step of 
glycolysis, but neither Th17 cell glycolysis nor oxidative phosphorylation is affected by TEPP-46 treatment. 
TEPP-46 increases STAT5 and decreases Smad2 phosphorylation; these effects are correlated with less IL-
17A and more GM-CSF in both WT and PKM2-KO treated cells. It remains unclear whether these effects are 
directly due to PKM activation. 

Because the passive EAE model used by Seki et al. confers greater 
specificity, the results better represent how TEPP-46 affects Th17 cell 
activity in a model of MS. Thus, it is concerning that TEPP-46 treatment 
increased T cell homing to the brain and atypical EAE, associated with 
ataxia, rather than inhibiting Th17 cell-mediated inflammation. It is also 
problematic that TEPP-46 inhibited development of T regulatory cells by 
interfering with TGFβ signaling, since T regulatory cells are critical for 
repressing inflammation.  
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While the findings by Seki et al. suggest the existing PKM2 
pharmacological activators (e.g., TEPP-46) may not be as effective as 
previously indicated, this does not necessarily mean PKM2 is not a viable 
target for the treatment of Th17 cell-mediated autoimmunity. It remains 
unclear whether many of the effects of TEPP-46, including those within 
Th17 cells, are specific to PKM2 modulation, and evidence suggests 
pharmacological inhibition of PKM2 may prove more effective than 
activation [25]. Overall, further studies using genetic modulation of PKM2 
(e.g., CRISPR to generate activating PKM2 mutants) are needed to better 
understand mechanisms underlying PKM2 activity in Th17 cells. It will 
also be important to evaluate whether reported effects translate to human 
Th17 cell development. Collectively, these studies should help inform the 
design of PKM2 modulators with better therapeutic efficacy.  
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