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ABSTRACT 

Background: White adipose tissue is an essential reservoir of energy that 
stores and releases fatty acids and secretes hormones, inflammatory 
cytokines and adipokines in health and cancer. The adipose tissue 
modulates cancer development and treatment, affecting responsiveness 
to chemotherapy, quality of life and survival. In addition, adipose tissue 
is damaged by doxorubicin, which is a non-selective anticancer drug 
widely used in clinical practice.  

Aim: This review was focused on the relevance of the white adipose 
tissue and how it can be affected by doxorubicin and cancer, the 
mechanisms involved and possible co-therapies that improve white 
adipose tissue functions. 

Scope of review: Adipose tissue complexity can influence cancer 
development, treatment and survival. The adipose tissue secretes 
adipokines that have paracrine and endocrine effects and may influence 
tumourigenesis, survival and quality of life in patients with cancer. The 
chemotherapeutic drug doxorubicin promotes deep impact on the 
adipose tissue, inhibiting adipogenesis and lipogenesis. Doxorubicin also 
causes downregulation on peroxisome proliferator-activated receptor 
gamma (PPARγ) and 5' adenosine monophosphate-AMP-activated protein 
kinase (AMPK) signalling in white adipose tissue, affecting lipid and 
glucose metabolism. Some alternative therapies, such as metformin, 
pioglitazone and physical exercise may contribute to mitigate side effects 
of doxorubicin. 

Conclusion: White adipose tissue has a complex and intricate role on 
cancer and is deeply affected by doxorubicin leading to a deep impact on 
adipose tissue function and worse quality of life. Potential co-therapies to 
prevent the side effects of doxorubicin should be studied to improve the 
quality of life of doxorubicin-treated patients. 
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INTRODUCTION  

The adipose tissue is essential for metabolism; it releases fatty acids in 
some physiological situations such as starvation, exercise or sleeping. 
The main functions of the adipose tissue are to supply nutrients, secrete a 
large variety of hormones, inflammation factors, liposoluble vitamins 
and adipokines, which lead to various endocrine and paracrine effects 
[1,2]. Adipokines and lipids contribute to tumour environment, while 
stromal and immune cells provide inflammatory factors that affect 
tumour development and progression [3].  

Excess or absence of white adipose tissue (WAT) can affect cancer 
growth in the host, modulate cancer treatment and quality of life in 
patients. While large adipose tissue may secrete inflammatory factors 
related to cancer development and impair the efficacy of chemotherapy 
by modifying adipokine and fatty acid composition [4], the loss of 
adiposity in patients with advanced cancer may contribute to mortality 
and even affect the response of chemotherapy against cancer [5,6]. Thus, 
low or high body mass are associated with elevated mortality after 
cancer diagnosis [6,7]. 

Doxorubicin is a non-selective chemotherapeutic drug widely used in 
clinical practice against many types of cancer such as lymphoma, lung, 
breast and ovarian cancer. Doxorubicin is derived from Streptomyces 
peucetius and is classified as an anthracycline [8]. There are three more 
anthracyclines, including daunorubicin, epirubicin and idarubicin, 
presenting differences in chemical structure, target and toxic properties 
[9]. The mechanisms of action of doxorubicin are based on cell death and 
cell growth arrest and promote apoptosis, necrosis and autophagy [10]. 
Doxorubicin promotes DNA intercalation, in which a complex is formed 
between the DNA double strand and the drug, causing breaks in DNA 
helix and leading to formation of fragmented nuclei. Doxorubicin blocks 
the action of topoisomerase 2, an essential enzyme for DNA replication, 
resulting in inhibition of cell proliferation and cell death. Then, it 
produces a semiquinone radical, that reacts with DNA, leading to 
oxidation of DNA by superoxide, hydroxyl and peroxide free radicals, 
which can also damage cell membranes through lipid peroxidation, 
triggering cell death pathways [10,11]. 

Doxorubicin is toxic to both cancerous and healthy cells, what limits 
its usage. Cardiotoxicity is the most studied side effect of doxorubicin, but 
it is also toxic to other organs such as the adipose tissue [12]. Doxorubicin 
induces body weight loss and adipose mass atrophy due to its effects on 
key factors of lipid and glucose metabolism, such as peroxisome 
proliferator-activated receptor gamma (PPARγ) and 5' adenosine 
monophosphate-AMP-activated protein kinase (AMPK), which results in 
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inhibition of adipogenesis and lipogenesis [12,13]. Adipogenesis and 
lipogenesis are physiological processes in which fibroblasts-like 
progenitors cells turn into mature adipocytes and start to accumulate fat 
as lipid droplets [14]. The expansion of adipose tissue can contribute to 
metabolic health through the differentiation of the tissue into smaller 
adipocytes and avoiding the formation of large adipocytes, which can 
secrete pro-inflammatory cytokines and can also supply nutrients to 
nearby organs and protect against mechanical stress [14]. Thus, adipose 
tissue atrophy caused by toxic effects of doxorubicin can compromise 
metabolic health. 

Loss of adiposity and skeletal muscle mass is a common syndrome 
observed in patients with cancer, involving increase in lipolysis, fatty 
acid oxidation and secretion of pro-inflammatory factors by adipose 
tissue, which are mechanisms related to cachexia [15,16]. Thus, co-
therapies that mitigate the chemotherapy-induced fatty acid release into 
systemic circulation can contribute to better prognosis for patients with 
cancer. Therefore, this review was focused on how the complexity of 
adipose tissue can be affected by cancer and doxorubicin, mechanisms 
involved and possible alternative therapies that may mitigate the 
doxorubicin side effects on adipose tissue.  

ADIPOSE TISSUE COMPLEXITY  

Adipose tissue is a non-fibre subtype of connective tissue, formed 
mainly by adipocytes and accompanied by a stromal vascular fraction, 
which consists of vascular endothelial cells, preadipocytes, fibroblasts, 
extracellular matrix and a mixture of immune cells [17]. In human body, 
there are four types of adipocytes: white, brown, beige and pink [18,19]. 

The white adipocytes have variable size and consist of unilocular lipid 
droplets, while brown adipocytes have numerous lipid droplets 
(multilocular) and high level of oxidative rate, high expression of 
uncoupling protein 1 (UCP-1) and are responsible for thermogenesis 
[20,21]. Furthermore, there are some other cells in the WAT that can 
express UCP-1 known as beige or brown-like adipocytes [22]. Basically, 
WAT and brown adipose tissue have opposite functions (storing and 
dissipating energy, respectively) and both are essential for survival [23]. 
Moreover, mice with high levels of brown adipocytes spread among WAT 
were less prone to develop obesity [24]. Finally, the pink adipocytes are 
white adipocytes located in the mammary gland that transdifferentiate 
during pregnancy and lactation into cells whose main function is milk 
secretion [25,26]. These cells have been recently named as pink 
adipocytes because of the macroscopic mammary gland colour during 
pregnancy [25,26].  

In general, WAT depots are identified as subcutaneous or visceral and 
can be found in different areas of the body; the location and quantity of 
WAT are related to propensity to cardiovascular diseases [27]. Many 
studies [13,28,29] consider an increase in the mass of the visceral adipose 
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tissue as being the trigger of insulin resistance and later, metabolic 
syndrome associated with low grade inflammation. 

Plasticity is an important characteristic observed in adipose tissue due 
to its ability to proliferate, differentiate and transdifferentiate, which 
means that a mature adipocyte can become another cell type through a 
reversible process. For example, white-to-brown transdifferentiation 
may occur in case of chronic cold exposure, a process called browning 
[18]. Furthermore, adipose tissue can undergo remodelling, which occurs 
especially in the WAT in situations such as greater caloric consumption 
compared to daily energy expenditure, resulting in exacerbated 
accumulation of triacylglycerol in the adipocytes. As a consequence, WAT 
hypertrophy or hyperplasia may occur.  

Beyond the adipocytes, the adipose tissue consists of resident and 
transient immune cells, including macrophages, mast cells, eosinophils, 
lymphocytes, dendritic cells, neutrophils and other stromal cells [3]. In 
humans, a study using immunohistochemistry techniques showed that 
the majority are of the immune cells in the adipose tissue are 
macrophages. Moreover, the proportion of macrophages can range from 
4% in visceral fat of normal weight subjects up to 12% in obese patients 
yet these immune cells are responsible for secretion of most of the 
cytokines and maintenance of inflammation [30,31].  

Macrophages founded in adipose tissue are in the majority derived 
from monocyte-derived macrophages, which are recruited to the adipose 
tissue based on high expression of monocyte chemoattractant protein-1 
(MCP-1) [32]. Adipose tissue macrophages (ATMs) show plasticity and 
they can assume phenotypes that depend on the crosstalk with other 
infiltrated immune cells (lymphocytes, eosinophils and neutrophils) and 
with the adipocyte itself. In regards of the polarization of macrophages, 
the M1 macrophages (classical macrophages) show pro-inflammatory 
characteristic with tumouricidal and anti-bactericidal properties [32]. In 
contrast, M2 macrophages, or alternative activation, is associated with 
the resolution of inflammation [33]. M2 macrophage showed different 
subsets that have already been described: M2a, wound‐healing 
macrophages that minister tissue repair; M2b, characterised by 
immunoregulation, promotion of infection and tumour progression; M2c, 
macrophages with anti-inflammatory and phagocytic properties; and 
M2d, tumour-associated macrophages that promote tumour progression 
and angiogenesis [34]. It is interesting that the metabolism varies among 
macrophages phenotypes and is crucial to fate the polarization. While in 
M1 macrophages a glycolytic metabolism is predominant, as it is a faster 
way of producing energy the M2 shows more oxidative metabolism, 
using fatty acids as substrate [35]. 

Any switch on ATMs profile may lead to increased release of 
adipokines (by the adipose tissue) and cytokines (by the macrophages) 
associated with inflammation [33]. It is extremely important to highlight 
that immune cells of the adipose tissue not only include macrophages but 
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also other myeloid and lymphoid cells. Mast cells, for example, have been 
indicated as mediators of macrophage infiltration due to faster increase 
in the number of macrophages upon their interaction with mast cells 
than that after the exposure of macrophages to high fat diet [36]. 
Moreover, dendritic cells play a role in the differentiation of pro-
inflammatory Th17 cells, which results in polarisation of M1 
macrophages [37].  

One of the hypotheses that explain the inflammatory environment on 
obese that lead to increase on recruitment of immune cells to this tissue, 
is the reduction in oxygen supply due to adipocytes hypertrophy and 
subsequent restriction in blood flow [38]. This hypoxic 
microenvironment induces the activity of some transcriptional factors, 
such as hypoxia-inducing factor 1 alpha (HIF-1a) and drives the fibrotic 
and pro-inflammatory response, stimulating the chemotaxis of 
macrophages by secretion of type 1 monocyte chemoattractant protein 
(MCP-1) [38]. As a consequence of the increase in ATMs and their 
subsequent inflammatory response, a state of chronic low grade 
inflammation, characterised by predominant production/secretion of 
pro-inflammatory cytokines, is trigged [39]. The low grade inflammation 
is an important risk factor to tumourigenesis and to sustain tumour 
growth [40]. 

CLINICAL RELEVANCE OF ADIPOSE TISSUE  

The WAT is located throughout the human body contributing as a 
connective tissue between organs and providing mechanical protection 
[41]. The anatomical distribution and localisation may be important to 
maintain the homeostasis, for example, lipids depots near reproductive 
system can support spermatogenesis in mice [42], suggesting they may be 
an in situ nutritive or trophic factor.  

Fat composition in the human body tends to be stable, besides that, 
the amount of adipose tissue is modulated by many factors, such as 
internal stimuli including gender, age, ethnicity, diseases, hormones and 
use of medicaments and external stimuli including climate, stress, diet 
and physical activity [1,43].  

Some epidemiological studies have found that obese and overweight 
individuals have an augmented risk for some types of cancer and 
mortality [44]. Prospectively, Calle et al. (2003), after analysing 900,000 
north-Americans, showed that elevated body mass index (BMI) is 
associated with elevated rate of death from some types of cancer with 
14% of all deaths for men and 20% for women [45]. Excess of adiposity, 
common in obesity, is generally a risk factor for several types of cancer, 
including colorectal [46], pancreatic, bladder, renal, ovarian, brain [47] 
and breast [48], since the excess of fatty acids can trigger tumorigenesis 
[49,50]. On the other hand, in some types of tumour, for instance the 
colon cancer, low BMI is associated with increased progression and death 
[51]. Besides epidemiological data, in clinical practice it is essential to 
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manage body weight in cancer patients and evaluate individual 
variability, cancer stage and type of cancer. 

CROSSTALK BETWEEN ADIPOSE TISSUE AND CANCER  

As any other endocrine organ, in order to maintain homeostasis, WAT 
secretes specific adipokines depending on the stimulus. Caloric deficits or 
fat accumulation are common reasons for production of adipokines by 
the adipose tissue; however, other situations must be considered, such as 
exercise and its variations (duration, intensity, etc.) and metabolic 
changes in microenvironments such as cancer [19]. The crosstalk 
between the adipose tissue and carcinomas, especially WAT, which is 
linked to a high cancer risk, will be further discussed. 

Leptin is an adipokine that regulates feeding behaviour and energy 
expenditure and it is found in high concentrations in obese individuals; 
however, they seem to be resistant to this adipokine. Conversely, leptin 
activates pro-inflammatory cytokines secretion from monocytes and 
macrophages [52]. Adiponectin is another adipokine mainly secreted by 
adipocytes, it has been shown to be a potent target for glucose uptake 
through AMPK in the skeletal muscle [53] and for avoiding LPS-induced 
secretion of pro-inflammatory cytokines by macrophages via inhibition 
of NF-κB [54].  

Adipose tissue and immune cells provide a suitable 
microenvironment for tumour development and progression (Figure 1) 
by trigger and support low grade inflammation [3]. More recently, the 
link between adipose tissue and tumour interaction was revealed, 
indicating that white adipocytes may play a role in cancer development 
[55]. It was demonstrated that a strong communication exists between 
white adipocytes and breast cancer cells, called cancer-associated 
adipocytes. These adipocytes are able to secrete high quantities of 
chemokines responsible for cancer progression, such as tumour necrosis 
factor alpha (TNF-α), vascular endothelial growth factor (VEGF) and 
proteases that promote breast cancer aggressiveness [56]. 

The crosstalk between adipose tissue and cancer is even more 
concerning due to the augmented VEGF expression that leads to 
angiogenesis, particularly in the visceral WAT [57], consequently 
providing all the factors that tumours need to support their metabolic 
activity. In theory, pro-inflammatory tumour microenvironment would 
be suitable for M1 macrophages; however, recruited monocytes are more 
prone to the M2 profile [58]. The pro-tumour macrophage polarisation 
(M2) seems to be mediated by high lactate exposure (the main metabolite 
from the tumoral aerobic glycolytic pathway) [59]. Notably, this shift in 
immune cell profile is one of the targets of cancer immunotherapies, 
explaining why identifying biomarkers is relevant for improving 
sensitivity of therapies and/or diminishing cancer cell resistance [60]. 
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Figure 1. Crosstalk between cancer cells and the adipose tissue. Adipose tissue secretes adipokines such as 
leptin, adiponectin, inflammatory factors, steroid hormones, and nutrients that can modulate cancer 
development and establishment. In addition, cancer cells can also secrete inflammatory factors that can 
lead to modulations in adipose tissue, such as recruitment of macrophages.  

Therefore, besides the low grade inflammation founded in obesity 
another risk factor for tumourigenesis is insulin resistance that results in 
increased growth factors such as insulin growth factor (IGF-1). 
Hyperinsulinemia promotes IGF-1 secretion, leading to enhanced mitosis, 
angiogenesis, and apoptosis inhibition; thus, hyperinsulinemia, together 
with pro-inflammatory cytokines secreted by the adipose tissue in 
obesity favours tumour progression [61]. Thus, diseases related to insulin 
resistance, such as obesity and diabetes, contribute to high risk of 
development of some types of cancer [62].  

Besides adipokines and cytokines, adipose tissue is important to 
regulation of sexual hormones and cortisol by expression of enzymes 
such as p450 Aromatase, 11β-Hydroxysteroid dehydrogenase 1 (HSD1) 
and 17β-HSD Aromatase, which produce extragonadal steroid hormones. 
These enzymes, respectively, can promote the conversion of androgen 
into oestrogen, estrone in estradiol and cortisone into active cortisol [63]. 
Aromatase activity promotes breast tissue proliferation through the 
release of endogenous oestrogen, causing an increase in the risk of breast 
cancer in postmenopausal women [64].  

Furthermore, alterations in adipose tissue derived hormones 
subsequently lead to local and systemic effects in glucose homeostasis 
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and can contribute to tumour microenvironment, since the tumour cells 
show elevated energetic metabolism and they use large amounts of 
glucose. It is well known that the primary source of energy in cancer cells 
is glucose, thus, high glucose levels in the systemic circulation can 
increase the risk of cancer cell growth and survival [62].  

Despite of obesity has been related to elevated risk for death, 
compared to normal-weight [65], the weight loss is also a poor prognostic 
sign and often is considered a marker of more aggressive or advanced 
cancer. Effects of cancer on metabolism can lead to cachexia, a syndrome 
characterised by significant reduction of muscle mass with or without 
reduction of fat mass [66,67]. It has been shown that loss of adipose tissue 
is a result of alterations in lipid uptake, lipogenesis and lipolysis, which 
can worsen the cancer treatment responsivity [68]. Weight loss is an 
indicator of reduced survival for patients with advanced cancer, loss of 
adipose tissue is faster than loss of lean mass [69]. Significant weight loss 
in lung cancer may lead to hyperlipidemia and insulin resistance, which 
can be explained by factors such as anorexia, loss of appetite, cytokines 
production, macrophage infiltration, adipocyte dysfunction and fibrosis 
[69]. For gastrointestinal cancer, weight loss pre- and during 
chemotherapy is associated to poor survival [70]. In summary, the excess 
or loss of WAT can be a trigger for cancer related morbidity and 
mortality; in this context, it is essential to consider the individual 
variability and cancer stage (diagnosis, treatment and prognosis).  

LIPID METABOLISM AND CANCER 

In cancer, the elevated secretion of cytokines by tumour cells can 
activate molecular pathways of lipolysis, such as activation of protein 
kinase A (PKA) [71]. Tumour secretion of interleukin 6 (IL6) and TNF-α 
leads to an increase in the rate of lipolysis and can contribute to 
metabolic dysfunction in tumour and adipocytes cells [72]. Then, free 
fatty acids (FFA) induce autocrine and paracrine signalling, increasing 
TLR-4 pathway and consequently increased the expression of 
inflammatory cytokines [72].  

FFA can be stored into lipid droplets, which are organelles existent 
mainly in adipocytes; however, lipids also can be stored in non-adipocyte 
cells, such as in liver, heart, kidney, skeletal muscle and even cancer 
cells, additionally excess of FFA can damage the functions of these cells, a 
process called lipotoxicity [73,74]. Then, inflammatory response can also 
contribute to lipotoxicity, inflammatory pathways can induce elevation 
of FFA into systemic circulation by increasing on lipolysis and blocking 
the PPARγ, leading to reduction on adipogenesis and fatty acid uptake, 
whereas PPARγ regulates the transcription of CD-36 and lipoprotein 
lipase (LPL) [73,74].  

Colon adenocarcinoma has been associated with high FFA levels into 
systemic circulation and high LPL activity in the adipose tissue and heart 
[75]. The main function of LPL is to uptake FFA from the lipoproteins, 
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which favours the accumulation of fatty acids into lipid droplets [74,75]. 
Inhibiting the fatty acid transporter CD-36 and stearoyl-CoA desaturase 1 
(SCD1) in breast cancer cells leads to attenuation of cell growth. SCD-1 
catalyses the conversion of saturated fatty acids into monounsaturated 
fatty acids and CD-36 transports this fatty acid, modulating membrane 
composition, fluidity and others second messengers. CD-36 and SCD-1 can 
be overexpressed in other cancer cells such as lung, colon and renal 
carcinoma [76]. 

Besides, many types of human solid tumours consist of lipid droplets 
composed by cholesterol and triacylglycerol, which are used as an energy 
source by neoplastic cells [77,78]. Tumour cells utilise fatty acid as source 
of energy to maintain their development and lipids are essential 
components for cell membranes and some organelles. During cell division, 
the tumour cells begin cholesterol biosynthesis before DNA duplication, 
showing that fatty acid synthesis is essential for cell proliferation [79]. The 
tumour lipid droplets compensate for lower nutrient supply and oxygen 
availability in the tumour microenvironment, thereby supporting redox 
homeostasis and membrane biogenesis during the rapid cell growth and 
tumourigenesis [74]. 

In addition, cholesterol and phospholipids are components of cellular 
membrane that contribute to properties such as fluidity and rigidity, 
modulating uptake of nutrients, hormones and vitamins [79]. Hilvo et al. 
(2014) found that breast cancer cells can express high levels of 
membrane phospholipids including phosphatidylcholines, 
sphingomyelins and ceramides [80]. Cholesterol-lowering medications 
can lead to cancer cell apoptosis and cell cycle arrest mainly in colorectal 
cancer [79,81–83]. Statins can impact metastasis and invasiveness 
properties of cancer cells through inhibition of Ras, which is frequently 
mutated in some neoplastic cells, Rho and activation of caspase 9 [83]. 
Therefore, many anticancer drugs affect lipid metabolism in cancer cells 
by modulating cholesterol production and inhibiting fatty acid 
synthetase and ceramide production, showing that lipid metabolism can 
be a target for therapies based on control of cancer cells division [79].  

IMPACTS OF DOXORUBICIN ON ADIPOSE TISSUE 

Doxorubicin is a well-known chemotherapy drug, which is widely 
used for treatment of solid tumours such as breast, liver, stomach, 
prostate, ovarian and lung cancer and soft tissue sarcomas [84]. 
Doxorubicin is one of the most potent anticancer drugs; it is an 
anthracycline drug that can be prescribed alone or in combination with 
others [84]. Cancer cells have a highly competent cell machinery, which 
allows them to establish and develop themselves in the host [85], for this 
reason, non-selective chemotherapy and radiotherapy can be used to 
treat the patient with cancer; however, the effects of these treatments are 
toxic to several types of cells such as adipocytes, myocytes and 
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cardiomyocytes [85]. In this section, will be described recent studies 
focused on the effects of doxorubicin on WAT.  

Our group showed that a single dose of doxorubicin (15 mg/kg body 
weight) caused rapid loss of adipose mass and inhibited adipogenesis and 
lipogenesis with an imbalance in adipokines, clearly showing that 
doxorubicin affects negatively the WAT function [12]. Doxorubicin 
impaired adipogenesis through downregulation of PPARγ, CAAT 
enhancer-binding protein alpha (C/EBPα) and sterol regulatory element-
binding protein 1c (SREBP1c) that are key transcription factors for 
adipocyte development [12]. Besides, doxorubicin compromised 
lipogenesis, reducing the incorporation of fatty acid into triacylglycerol 
in retroperitoneal adipose tissue, reducing the expression of lipogenic 
enzymes such as fatty acid synthase (FAS) and acetyl-Coa carbolyxase 
(ACC) together with the inhibition of lipid droplets in 3T3L1 cells [12].  

In addition, doxorubicin elevates lipolysis through upregulation of the 
enzyme adipose triglycerides lipase (ATGL), elevating lipid profile into 
systemic circulation [86]. Vergoni et al. (2016) showed that a single 
injection of doxorubicin elevated FFA levels into systemic circulation 
[87]. In contrast, in our study in vitro, lipolysis and ATGL were inhibited 
by doxorubicin [88].  

The result of impaired lipogenesis and augmented lipid profile can 
alter adipose tissue functions and glucose metabolism [86]. Doxorubicin 
reduced adiponectin content in WAT and its gene expression [87,88]. 
Adiponectin regulates lipid and glucose metabolism and doxorubicin 
treatment decreased this adipokine concentration and lowered glucose 
uptake after insulin stimulus in mice and 3T3L1 cells [12].  

Moreover, doxorubicin lead to inflammation and fibrosis on WAT. A 
single dose of doxorubicin promoted the increased on expression of 
inflammatory cytokines (TNF-α, IL6 and interleukin 1 beta (IL1β)) 
concomitantly with raised infiltration of macrophages [89]. Moreover, it 
was observed the presence of fibrosis can damage expandability of 
subcutaneous adipose tissue mediated by the high extracellular matrix 
rigidity, leading to impairment in metabolic pathways [88]. 

Besides, it was demonstrated that obese tumour-bearing mice 
presented reduction on tumour cells death by doxorubicin via alterations 
in lipid profile markers and fatty acid composition [4], showing that 
doxorubicin can affect the crosstalk between adipose tissue and cancer 
cells [89].  

Therefore, the main molecular mechanism that link the effect of 
doxorubicin with disturbing on glucose and lipid metabolism is the 
impairment of PPAR-γ and AMPK signalling on WAT (Figure 2). For this 
reason, PPARγ and AMPK and their functions are detailed in the next 
sections.  
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Figure 2. Doxorubicin negatively affects white adipocytes, reducing adipogenesis, lipogenesis, adiponectin 
production and glucose uptake thorough downregulation of PPARγ, FAS, GLUT-4 and AMPK, which are 
essential for lipid and glucose metabolism. In addition, doxorubicin can induce fibrosis in adipose tissue 
and can also induce lipotoxicity. 

PPARγ 

In adipocytes, PPARγ is downregulated by doxorubicin [12], PPARγ 
plays an important role in the differentiation into mature adipocytes, 
adiponectin production, lipid metabolism and inflammatory pathway 
[90]. PPARγ is a nuclear receptor that forms a heterodimer with the 
retinoid X receptor and binds to the peroxisome proliferator response 
element gene promoter, resulting in the regulation of gene transcription 
mainly involved in lipid and glucose metabolism [91].  

PPARγ is considered the master regulator of adipogenesis [92]. In vitro 
non-adipocytes cells can be stimulated to differentiate into mature 
adipocytes by allowing them to express PPARγ mRNA and then start to 
accumulate lipid droplets [92]. PPARγ is essential for adipocytes 
maturation and survival as it is observed in conditional fat specific 
knockout model once total knockout models are lethal [92,93].  

PPARγ is necessary for the regulation of insulin sensitivity and for this 
reason it is the pharmacologic target to treat patients with insulin 
resistance. The effects of PPARγ agonists are explained by increase 
glucose uptake and adiponectin secretion by adipose tissue, decreasing 
FFA into systemic circulation and reducing pro-inflammatory cytokines 
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production [92]. However, as previously mentioned, PPARγ is 
downregulated by doxorubicin damaging in vitro differentiation into 
mature adipocytes, reducing glucose uptake and adiponectin 
concentrations in vivo [12].  

Moreover, PPARγ is detected in most tissues and also expressed in 
tumour, intestine and immune system [94]. In some types of cancer, 
PPARγ has shown antitumour effects [95]. Recently, a correlation 
between PPARγ and P-gp has been suggested. P-gp is a target of Wnt/β-
catenin pathway, an essential pathway on epithelial to mesenchymal 
transformation (EMT) and its mRNA downregulation is a consequence of 
reduction in β-catenin levels caused by PPAR agonists [96]. 

In addition, PPARγ can act on chemotherapy sensitivity. When 
activated, PPARγ was efficient in reversing the sensitivity of cancer cells 
in combination with doxorubicin [97]. Thus, the expression of PPARγ has 
been associated with greater survival in patients with colorectal cancer, 
implicating that chemotherapeutic sensitivity would be dependent on 
PPARγ expression in the tumour [98]. 

The mechanisms by which PPARγ agonists have been considered 
potential adjuvants in conventional therapies are angiogenesis, 
inhibition of cell proliferation and apoptosis and chemoresistance 
[98,99]. A study conducted by Patel et al. (2001) showed that PPARγ 
activation increased the expression of a potent tumour suppressor, 
phosphatase and tensin homolog, in both colon and breast cancer cells, 
which reduced their rate of proliferation [100].  

AMPK  

Doxorubicin can reduce AMPK expression in adipose tissue (Figure 2) 
and even in other tissues such as skeletal muscle and heart [12,101,102]. 
Nonetheless AMPK is a regulator of multiple metabolic pathways and 
several studies have shown its activation importance for treating insulin 
resistance, diabetes, obesity, cardiovascular disease, non-alcoholic fatty 
liver disease and cancer [103–107].  

AMPK is a serine/threonine-specific protein kinase that exists as 
multiple heterotrimeric complexes comprised of a catalytic α subunit (α1 
and α2), a regulatory β subunit (β1 and β2) and γ (γ1, γ2, γ3) subunits 
[105]. These subunit conformations are uniquely distributed across 
different cell types, white adipocytes expresses AMPK complexes 
composed predominantly by α1, β1, β2, γ1 and γ2 subunits [108]. 

Several pathways of glucose and lipid metabolism in WAT have been 
demonstrated to be potently regulated by AMPK. The activation of AMPK 
in WAT is noted under conditions of increased β-adrenergic stimulation, 
which occurs during fasting and physical exercise, leading to rapid 
adjustments in the metabolism of substrates [109,110].  

Some metabolic responses induced by the activation of AMPK in 
adipocytes are quite different from those observed in skeletal muscle 
cells and hepatocytes. This indicates that AMPK plays its role as a cell 
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energy sensor in a time-dependent and tissue-specific manner [108]. 
Additionally, effects of AMPK on the adipocytes metabolism may vary 
depending on the duration of AMPK activation [109,110] and AMPK can 
alter long term changes in WAT function, positively regulating the 
expression of genes (PGC-1α, PPARγ/α/δ, CPT-1b and COX) that markedly 
increase oxidation, remodelling or metabolism of adipocytes [108].  

Furthermore, AMPK disruption is common in cancer associated to 
cachexia and AMPK activation in cachectic mice can reduce WAT wasting 
[111]. Hence, strategies to prevent AMPK and PPARγ dysfunction can be 
alternative co-treatments for chemotherapy.  

PHARMACOLOGICAL AND NON-PHARMACOLOGICAL STRATEGIES 
TO PREVENT DOXORUBICIN-INDUCED DISTURBS IN CANCER 
PATIENTS 

It is necessary to study co-therapies that mitigate side effects 
promoted by doxorubicin and others treatments against cancer, focusing 
in quality and life expectancy improvements of oncologic patients. Thus, 
we propose that PPARγ and AMPK are two molecular pathways that can 
improve outcome in different cancer types with benefits on whole body 
homeostasis, for this reason, will be briefly discussed the therapies with 
metformin, pioglitazone and physical exercise as potential co-treatments 
to prevent doxorubicin-induced disturbs in cancer patients. 

Metformin 

Metformin is a classical anti-diabetes drug that reduces 
hyperglycaemia and cardiovascular risk, induces weight loss and 
improves insulin resistance [112,113]. Molecular mechanisms of 
metformin are associated with AMPK activation, whose function is well 
known in liver and muscle cells [114]. Additionally, metformin is able to 
increase AMPK activity in adipocytes [115].  

Many studies have shown the use of metformin as an anticancer/anti-
tumour agent individually or in combination with frequently used 
chemotherapeutic agents [116,117]. Diabetic individuals on metformin 
treatment have a lower risk of developing cancers than non-treated 
diabetics [116,117].  

Furthermore, diabetic individuals with cancer who are treated with 
metformin show a positive response to chemotherapy treatment and 
have high survival rates and a better prognosis when compared to 
individuals who did not use metformin [116,118]. In addition to these 
classic effects of metformin, it also shows positive effects when used in 
conjunction with chemotherapy drugs, more specifically those from the 
anthracycline family (doxorubicin and daunorubicin), showing reduced 
growth and survival of lymphoma cells, T-acute lymphoblastic leukaemia 
cells and acute lymphoblastic leukaemia [119–123].  

Metformin prevented fibrosis and restored glucose uptake in 
subcutaneous adipose tissue after insulin stimulation in mice treated 
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with doxorubicin, yet the drug was unable to prevent other side effects, 
such as loss of adipose tissue and inflammatory response [88]. 
Subcutaneous adipose tissue from metformin-treated mice also showed a 
reduction in collagen deposition and reducing fibrosis [88].  

Moreover, metformin can contribute to reduction in the dosage of 
doxorubicin necessary to prolong remission and consequently, can 
reduce the cardiac toxicity of anthracyclines [122]. In general, metformin 
can promote protective effects to patients during chemotherapy. 

Pioglitazone 

Pioglitazone is an antihyperglycaemic drug, together with metformin 
they are considered safe and for this reason mostly prescribed for 
patients with diabetes mellitus [124]. Pioglitazone is a well-known PPARγ 
agonist, classified in the family of thiazolidinediones, it modulates insulin 
sensitivity through improvement in β-pancreatic cells, liver, skeletal 
muscle and WAT [125]. This drug also enhances PPARγ gene expression 
leading to upregulation of adiponectin secretion by WAT resulting in 
glycemic homeostasis and contributing to adipocyte functions [124].  

In addition, pioglitazone can exert anti-cancer effects through 
apoptosis induction and cell cycle arrest leading to decreased tumour 
incidence in chemically-induced lung and colon cancer in 
animals [124,126].  

Furthermore, pioglitazone can attenuate doxorubicin-induced 
chemoresistance and side effects. Cancer cells can present doxorubicin-
induced chemoresistance, causing elevation of P-gp gene expression and 
then pumping out the chemotherapy drug to extracellular fluid. 
Pioglitazone may be an alternative therapy to avoid chemoresistance 
reducing P-gp expression in osteosarcoma cells [97]. Pioglitazone also 
protect kidney from toxicity doxorubicin-induced, attenuating fibrosis 
and inflammatory pathways [127].  

Besides that, most studies with pioglitazone as chemoprotective drug 
are experimental models and they are not related to WAT, for this 
reason, it is suggested that pioglitazone is an alternative therapy against 
side effects induced by doxorubicin.  

Physical Exercise 

Sedentary lifestyle can be considered a disease. Regular physical 
exercise is an excellent tool to prevent chronic diseases, such as diabetes, 
cardiovascular diseases and obesity, yet, exercise is a recommended 
strategy for prevention and treatment of some types of cancer [128,129]. 

Physical exercise also plays an important role in the rehabilitation 
process in patients with cancer [130,131]. Physical exercise post and 
during cancer treatment is safe and induces the positive effects on 
muscular strength, mental health and cardiorespiratory fitness, as well 
showed by a systematic review and meta-analysis [131]. This supports 
the conclusion that physical training is safe during and after cancer 
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treatment and can improve functional capacity, quality of life and reduce 
cancer related fatigue in various groups of cancer survivors [130–133]. In 
addition, Lira et al. (2008) showed that aerobic exercise promotes a 
protective effect, reducing 10 times the tumour weight in Walker-256 
tumour-bearing rats [134]. 

Some chemotherapies are related to sarcopenia, loss of adipose mass, 
compromised quality of life, cardiotoxicity and asthenia [13,135–138], 
however, few studies have showed the effect of physical exercise in 
adipose tissue during chemotherapy treatment. Physical exercise 
consistently improves the quality of life by inducing significant 
alterations in body composition, metabolism and chronic inflammation. 
Moreover, regular physical exercise has been reported to be an inducer 
of anti-inflammatory response. Studies have shown that exercise-
mediated anti-inflammatory effect leads to improved protection against 
chronic inflammatory conditions and levels of pro-inflammatory 
cytokines and C-reactive proteins [139–142]. 

Physical exercise requires an increase in muscle contractions, which 
initiates increased production and release of numerous muscle-derived 
cytokines and other proteins called myokines; based on this process, the 
skeletal muscle is defined as an immunogenic secretory organ [143]. 
Among these myokines, the role of IL6 in the metabolism has been well 
studied and described. The effects of IL6 form a great paradox; in 
infections and chronic diseases, the IL6 acts as a phase acute protein and 
a pro-inflammatory cytokine, whereas the IL6 released from skeletal 
muscle contraction shows anti-inflammatory properties and anti-
tumoural effects [144,145]. Moreover, IL-6 recombinant infusion induces 
insulin-mediated glucose uptake and improvement on fatty acid 
metabolism that should be dependent of AMPK signalling [146]. Different 
research groups have tried to clarify why these different effects on IL6 
are dependent on the stimulus and site of production. Until this moment 
is most acceptable answer is that the acute and transient substantial IL6 
increase into systemic circulation after exercise induces the beneficial 
effects, while the chronic but less intense increase induces the 
deleterious effects. In this sense, it is observed a relation between high 
IL-6 and poor prognostic in diseases, short life expectancy, increased 
tumour size, proteolysis and persistent inflammation. Thus, new studies 
are necessary to elucidate the difference between the molecular 
pathways and the good and bad effects of IL6.  

Exercise leads to the activation of AMPK in the WAT [109] 
concomitantly with adrenergic stimulus, from which it can be predicted 
that β-adrenergic agonists and their second messenger cAMP stimulate 
AMPK activity [110,147]. Moreover, IL6 can activate AMPK in muscle and 
adipose tissue, which contributes to the increase in AMPK activity in 
these tissues in response to exercise. Kelly et al. (2004) also suggested that 
a genetic lack of IL6 is associated with a decrease in AMPK activity [148]. 
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Overall, physical exercise can promote a protective effect on the 
maintenance of the anti-inflammatory profile in adipose tissue in 
tumour-bearing rats [149] and can mitigate the metabolic disturbance 
caused by tumour [150]; however, the protective role of exercise in 
chemotherapy treatment in patients with cancer is unclear.  

CONCLUSIONS 

The white adipose tissue has a complex and intricate role on sustained 
tumourigenesis, survival and quality of life in patients with cancer. 
Adipokines effects may influence cancer development and 
chemotherapeutic treatment. The chemotherapeutic drug doxorubicin 
disturbs physiological and immunometabolic functions of white adipose 
tissue, affecting lipid and glucose metabolism through disruptions on 
PPARγ and AMPK pathways. Hence, the study of potential co-therapies 
focused in these pathways, such as metformin, pioglitazone and physical 
exercise, can contribute to the attenuation of doxorubicin-induced side 
effects and can promote protective effects on white adipose tissue, 
consequently improving quality of life of doxorubicin-treated patients. 
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