
 ij.hapres.com 

Immunometabolism. 2020;2(3):e200020. https://doi.org/10.20900/immunometab20200020 

Review 

T Cell Metabolism in Cancer Immunotherapy 
Halil-Ibrahim Aksoylar 1,2, Natalia M. Tijaro-Ovalle 1,2,  
Vassiliki A. Boussiotis 1,2,*, Nikolaos Patsoukis 1,2,*  

1 Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, 

Harvard Medical School, Boston, MA, 02215, USA 
2 Department of Medicine, Beth Israel Deaconess Medical Center, Harvard 

Medical School, Boston, MA 02215, USA 

* Correspondence: Vassiliki A. Boussiotis, Email: vboussio@bidmc.harvard.edu; 

Tel.: +1-617-667-8563; Nikolaos Patsoukis, Email: npatsouk@bidmc.harvard.edu; 

Tel.: +1-617-667-8573.  

ABSTRACT 

Immune checkpoint therapies aiming to enhance T cell responses have 
revolutionized cancer immunotherapy. However, although a small 
fraction of patients develops durable anti-tumor responses, the majority 
of patients display only transient responses, underlying the need for 
finding auxiliary approaches. Tumor microenvironment poses a major 
metabolic barrier to efficient anti-tumor T cell activity. As it is now well 
accepted that metabolism regulates T cell fate and function, harnessing 
metabolism may be a new strategy to potentiate T cell-based 
immunotherapies.  
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INTRODUCTION 

Metabolic reactions that occur in living cells result in the generation of 
adenosine triphosphate (ATP), the central molecule that fuels most 
energetic processes. Cells use carbohydrates as substrates for energy by 
engaging glycolysis, the anaerobic pathway that takes place in the 
cytoplasm and converts glucose to pyruvate. Pyruvate is converted to 
lactate by lactate dehydrogenase with concomitant interconversion of 
NAD+ and NADH. Pyruvate can also be converted to acetyl-CoA and enter 
the tricarboxylic cycle (TCA cycle), known as the Krebs cycle, which occurs 
in the mitochondria and requires the presence of oxygen. The disposal of 
electrons released by both glycolysis and TCA cycle generates ATP in a 
series of reactions known as oxidative phosphorylation (OXPHOS) in the 
electron transport chain (ETC). Although glycolysis and lactate production 
(also known as lactate fermentation) is an anaerobic process, it can occur 
also in presence of ample amounts of oxygen. This form of aerobic 
glycolysis is known as the Warburg effect [1].  
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An often-neglected part of metabolism tightly connected with the main 
metabolic pathways is metabolism of reactive oxygen species (ROS). ROS 
are formed mainly in mitochondria when electrons escape the ETC and 
combine with oxygen to form unstable and highly reactive forms of 
oxygen, which are involved in the regulation of biological processes. For 
example, ROS-mediated reversible oxidation of protein thiols has been 
implicated in the regulation of phosphatases, kinases, transcription 
factors, epigenetic regulators and antioxidant enzymes [2–10]. A central 
regulator of cellular resistance to oxidants is transcription factor Nrf2, 
which is kept suppressed by Keap1-dependent ubiquitination and 
proteasomal degradation. Under conditions of oxidative stress, Keap1 
oxidation results to Nrf2 release and translocation to the nucleus [11], 
where it controls an array of antioxidant response element (ARE)-
dependent genes to provide a permissive setting for exposure to an 
oxidative environment [11–14]. Disturbance of the normal redox state can 
lead to damaged proteins, lipids, and DNA [15], however, moderate ROS 
levels can also act as important messengers in redox signaling.  

T cells are specific effectors of our immune system, which, besides 
pathogens, they continuously survey and eliminate tumor cells [16]. 
However, major obstacles such as the expression on T cell surface of 
inhibitory receptors (known as checkpoint inhibitory molecules) as well 
as the metabolically hostile tumor microenvironment prevent anti-tumor 
function. Antibody-mediated blockade of T cell inhibitory receptors 
(termed immune checkpoint therapy; ICT), has shown promise to enhance 
T cell responses against cancer. However, ICT alone has been largely 
unsuccessful [17–20] as only a fraction of patients develops durable anti-
tumor responses, underlying the need for finding new combinatorial 
strategies to improve ICT outcomes. Here we will discuss research findings 
on how metabolic interventions may synergize with ICT to improve T cell-
based tumor immunotherapies. 

METABOLIC ADAPTATIONS DURING DIFFERENTIATION OF NAÏVE 
INTO EFFECTOR T CELLS 

Circulating in the lymphoid tissues, naïve T cells utilize a slow rate of 
metabolic activity to meet their energy demands for survival and a slow 
rate of homeostatic proliferation. Naïve T cells are quiescent, and their low 
metabolic needs are sustained by mitochondrial metabolism. They 
generate ATP mainly through oxidation of pyruvate in the TCA cycle, 
OXPHOS and fatty acid oxidation (FAO) (Figure 1A) [21–23]. In this resting 
state, they display lower glucose and fatty acid uptake, and smaller 
mitochondrial mass compared with resting memory T cells [24].  

After encountering antigens that are recognized by the T cell receptor 
(TCR) and simultaneously activate costimulatory signals such as CD28, T 
cells undergo extensive proliferation, growth and differentiation into T 
effector cells [25]. The transition to an effector state is characterized by a 
shift towards a predominantly glycolytic state that allows T effector cells 
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to fulfill their bioenergetic needs to support generation of biomass and 
energy required for rapid proliferation (Figure 1A) [26]. Even though 
activated lymphocytes are able to increase OXPHOS acutely [27–29], 
engaging glycolysis yields ATP at a sufficient rate and provides key 
intermediates for the pentose phosphate pathway (PPP), which sustains 
biosynthesis and generates NADPH, an essential reducing molecule [30]. 
These metabolic reprogramming events are transcriptionally regulated 
upon T cell receptor signaling that promotes the expression of amino acid 
and glucose transporters [30,31]. By using glucose to fulfill their 
bioenergetic demands, activated T cells spare other nutrients such as 
amino acids and fatty acids as building blocks for their growth, division 
and clonal expansion. Paradoxically, although effector T cells have 
increased fatty acid uptake, they rely on the energy-consuming process of 
de novo fatty acid synthesis to support lipid biosynthesis for building new 
membranes and generating signaling molecules [32,33]. Notably, it was 
demonstrated that Th17 but not Treg differentiation depends on acetyl-
CoA carboxylase 1 (ACC1), a key enzyme that mediates de novo fatty acid 
synthesis and targeting ACC1 was proposed as a new strategy for 
metabolic immune modulation against autoimmune and inflammatory 
diseases that are mediated by Th17 cells [34]. 

The PI3K-Akt pathway regulates glycolysis and protein metabolism in 
activated T cells by phosphorylating the mammalian target of rapamycin 
(mTOR) [35,36]. When mTOR is inhibited, glycolysis is suppressed and FAO 
is enhanced, resulting in impaired effector differentiation and enhanced 
memory phenotype [37]. This has also been observed in murine CD8+ T 
cells, where glucose starvation limits IFN-γ gene expression, and also 
impairs the transition to T effector phenotype [38]. Therefore, activated T 
cells have to adapt swiftly to antigen stimulation and upregulate the 
expression of glucose receptor Glut1, among other nutrient receptors, in 
order to support anabolic growth [39–41]. During T cell activation and 
differentiation, expression of glycolysis-related genes and enzymes is also 
enhanced [30,42,43]. While effector T cells express high levels of glucose 
transporter Glut1, regulatory T cells (Treg) which have a quiescent 
phenotype, depend on high lipid oxidation rates promoted by AMP-
activated kinase (AMPK) activity, which opposes mTOR-dependent cell 
growth pathways including de novo fatty acid synthesis [39,44].  

Immunometabolism. 2020;2(3):e200020. https://doi.org/10.20900/immunometab20200020 

https://doi.org/10.20900/immunometab20200020


 
Immunometabolism 4 of 24 

 

Figure 1. Mitochondrial metabolism supports T cell responses. (A) Metabolic states of naïve, effector and 
memory T cells. (B) Dysfunctional metabolism in exhausted TILs with loss of mitochondrial fitness. Potential 
molecular targets to be activated or overexpressed to reinvigorate mitochondrial metabolism and to 
enhance anti-tumor function. 

Carbohydrates are not the only key nutrients required for T cell 
activation and effector differentiation. Amino acid metabolism has an 
indispensable role in the T cell activation process, particularly during 
antigen encounter and clonal expansion [45,46]. Glutamine is used as a 
fuel for mitochondrial oxidation, which promotes T effector generation 
and fitness [47,48]. Glutaminolysis allows ATP production in rapidly 
proliferating cells and supports their development and functionality, by 
increasing IL-2 receptor expression and cytokine production [31,49]. 
Deleting glutamine/leucine transporter Slc7a5 in T cells impaired 
metabolic reprogramming and interfered with T helper differentiation 
and clonal expansion [31]. Extracellular alanine deprivation during the 
early activation phase also led to functional impairment in T cells [50].  

MITOCHONDRIAL METABOLISM REGULATES MEMORY T CELL 
RESPONSES 

Studies investigating the metabolism of memory T cells have 
demonstrated that spare respiratory capacity (SRC), the extra 
mitochondrial capacity available in the cell to produce energy under 
conditions of stress, is critical for memory CD8+ T cell differentiation 
(Figure 1A). Distinct from effector T cells, IL-15-induced memory CD8+ T 
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cells display enhanced oxidative metabolism largely due to increased 
mitochondrial biogenesis and increased expression of carnitine palmitoyl 
transferase alpha (CPT1α), a rate-limiting metabolic enzyme for 
mitochondrial FAO (Figure 1A) [51]. Notably, memory T cells utilize FAO 
to support their development and long-term survival without depending 
on extracellular fatty acids. Instead, memory CD8+ T cells take up 
extracellular glucose and glycerol to synthesize fatty acids and 
triglycerides in order to support FAO. Then, the lipolytic enzyme lysosomal 
acid lipase (LAL) mobilizes stored fatty acids for oxidation and memory T 
cell development [33,52]. Having an increased mitochondrial mass and 
enhanced SRC, allows memory T cells to rapidly respond to an antigen-
mediated rechallenge.  

Among naïve, central and effector memory T cell populations, effector 
memory T cells are the ones predominantly enriched in the tumor 
microenvironment and although do not proliferate well relative to naive 
or central memory T cells, they have enhanced effector functions such as 
cytotoxic potential and effector cytokine production. Importantly, a recent 
study identified significant differences in the mechanistic dependency of 
naïve and central memory T cells on fatty acid metabolism compared with 
effector memory T cells [53]. Specifically, under glucose starvation, naïve 
and central memory T cells survived by upregulating fatty acid synthesis, 
FAO and OXPHOS which however compromised IFN-γ expression upon T 
cell activation. In contrast, effector memory T cells, although maintained 
FAO, did not upregulate fatty acid synthesis, which allowed sustained 
production of high levels of IFN-γ. These observations suggest that effector 
memory T cells adapt to limited dependency on fatty acids in order to 
maintain functionality under limiting glucose conditions [53]. 

Although, several studies support the concept that mitochondrial 
oxidative metabolism promotes memory T cell development and 
maintenance, other studies have shown that constitutive glycolysis and 
memory T cell development may co-exist. Using a conditional deletion 
model of Von Hippel-Lindau (Vhl), a regulator of HIF1α, Phan and 
colleagues demonstrated that constitutive activation of HIF1α induced 
constitutive glycolysis in transgenic T cells. Upon viral infection, VHL-
deficient T cells were able to generate long term memory T cells without 
utilizing mitochondrial metabolism and without possessing increased SRC. 
Indeed, VHL-deficient memory T cells displayed an effector memory 
phenotype characterized by T-bet expression and low levels of surface 
CD62L. This study further demonstrated that, SRC is a characteristic 
feature of central memory T cells, while effector memory T cells that 
develop without engaging mitochondrial oxidative metabolism can still 
provide protective immunity [54].  

ROLE OF MITOCHONDRIA IN T CELL EFFECTOR FUNCTION 

Although most studies have focused on the role of glycolysis in effector 
function and mitochondrial OXPHOS as a means to induce memory and 
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Treg cells, it is increasingly appreciated that both these key metabolic 
pathways are required to orchestrate T cell effector function, and that 
increased OXPHOS together with increased glycolysis is a signature of T 
effector cells. A recent study showed that TCR engagement results in 
reprogramming of the T cell proteome and phosphoproteome, where the 
significant increase in mitochondrial functions assists T cell exit from 
quiescence and entry into the cell cycle, through mTORC1-dependent 
mitochondrial biogenesis [55]. Notably, another study showed that in vivo 
activated CD8+ T cells, in contrast to in vitro stimulation, operated at 
approximately 50% of maximal glycolysis and had decreased lactate 
production, particularly at the peak of their expansion phase, while 
displaying increased rates of oxidative metabolism [56]. Strikingly, 
increased OXPHOS favored differentiation to Th17 phenotype as TCR-
dependent induction of the Th17 transcription factor basic leucine zipper 
transcription factor TF-like (BATF) was partially regulated by mTORC1 
activation, which required ATP-linked mitochondrial OXPHOS [57]. This 
effect might be partially dependent on mitochondria-driven ROS 
necessary to support TCR signaling for subsequent transition of quiescent 
naïve T cells into an activated state [58]. 

TUMOR IMMUNOTHERAPY AND T CELL METABOLISM  

Effects of Immune Checkpoint Therapy on T Cell Metabolism  

Understanding the role of metabolism in T cell differentiation and 
function might lead to new interventions to fight cancer. The recent 
development of monoclonal antibodies against PD-1 and CTLA-4, known 
as immune checkpoint inhibitors, has revolutionized cancer management 
in the last decade [17,59,60]. PD-1 blockade rescues exhausted T cells that, 
upon chronic antigen stimulation, lose their effector function [61,62]. 
Understanding the metabolic impact of immune-therapies has become 
critical because partially exhausted T cells display a defective metabolic 
profile, which can be reverted upon PD-1 blockade treatment [63,64]. PD-
1 and CTLA-4 receptors decrease glucose uptake, inhibit glycolysis and 
impair T cell activation [65], whereas only PD-1 engagement promotes FAO 
and enhances lipolysis [63,65]. In mice, PD-1 blockade reverses glucose 
restriction in TILs, enhancing CD8+ T cells glucose influx and glycolysis via 
mTOR signaling, which allows IFN-γ production, improving their effector 
anti-tumor function [66]. Another study identified the glycolytic 
metabolite phosphoenolpyruvate (PEP) as a repressor of sarco/ER Ca2+-
ATPase (SERCA) activity resulting in sustained TCR-mediated Ca2+-NFAT 
signaling and effector functions. Enhancing PEP production by 
overexpressing PEP carboxykinase 1 (PCK1) potentiated T cell anti-tumor 
activity, restricting tumor growth and prolonging survival of melanoma-
bearing mice [67]. 
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Manipulation of Glycolytic Metabolism to Improve T Cell Function 

Excessive and sustained glycolysis results in terminal differentiation 
and T cell exhaustion [68]. Limiting glycolysis might be a strategy to 
enhance memory T cell formation. Using an inhibitor of glycolysis, 2-
deoxyglucose, while activating CD8+ T cells, enhanced not only the 
generation of memory cells but also improved anti-tumor activity [68]. 
Moreover, pharmacologic inhibition of Akt enhanced expansion of potent 
tumor-specific lymphocytes that express memory T cell markers such as 
elevated SRC and enhanced lipid oxidation metabolism [69]. These 
observations indicate that impeding the aggressive glycolytic metabolism 
either by directly inhibiting anabolic metabolism with glucose analogs or 
by inhibiting signaling pathways downstream of TCR, enables the 
formation of memory T cells with potent anti-tumor function. Likewise, 
inhibition of mTORC1 pathway in viral infection models enhanced the 
quantity and quality of memory CD8+ T cells, largely due to limiting the 
activation of glycolytic machinery [37].  

Improving Mitochondrial Metabolism to Enhance T Cell Function 

Recent studies highlight the importance of mitochondrial fitness and 
oxidative metabolism for enhanced anti-tumor function by tumor 
infiltrating T cells. A stress responsive transcription factor, basic helix-
loop-helix family member e40 (Bhlhe40), has recently been shown to be a 
promising target to improve mitochondrial fitness in TILs as Bhlhe40 
deficiency abrogated the therapeutic effects of anti-PD-L1 blockade 
(Figure 1B). In addition, TILs deficient for Bhlhe40 had impaired ability to 
produce metabolites required for acetyl-CoA synthesis, resulting in 
decreased histone acetylation of functional genes [70]. Pathways 
regulating the biogenesis of mitochondria have important implications on 
anti-tumor function of T cells. Scharping et al. have shown that T cells 
infiltrating tumors show decreased mitochondrial function and mass due 
to chronic Akt-mediated inhibition of PPAR-gamma coactivator 1 alpha 
(PGC1α). When mitochondrial biogenesis was improved by enforced 
PGC1α expression, tumor specific T cells showed enhanced anti-tumor 
function, suggesting PGC1α as a promising target to promote T cell fitness 
(Figure 1B) [71]. In human melanoma tumors, PGC1α expression similarly 
provides increased mitochondrial capacity and resistance to oxidative 
stress [72]. Thus, it remains to be seen whether using PGC1α activators or 
inhibitors would have anti-tumor effects or would potentially support 
tumor growth.  

Besides checkpoint blockade, activation of costimulatory receptors 
induces metabolic reprogramming with implications on T cell fate and 
function. 4-1BB costimulation can enhance mitochondrial capacity in CD8+ 
T cells by engaging PGC1α-mediated signaling pathways. Combined with 
PD-1 blockade, 4-1BB agonist enhanced anti-tumor immunity in B16-F10 
melanoma model (Figure 1B) [73]. In a different study, metabolic 
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dysfunction of TILs was overcome by elevating leptin levels in the tumor 
microenvironment. Delivery of an engineered oncolytic vaccinia virus 
expressing recombinant leptin improved the anti-tumor function and 
memory response by TILs through enhanced mitochondrial oxidative 
metabolism (Figure 1B) [74].  

Balancing Metabolism of ROS in Favor of T Cell Function 

Although the tumor microenvironment is characterized by elevated 
ROS levels [75], use of antioxidants has not been an effective strategy to 
prevent tumor growth. On the contrary, antioxidants could promote 
melanoma metastasis [76] and accelerate lung cancer progression in mice 
[77]. In another study, conditions of increased oxidative stress could 
inhibit melanoma distant metastasis without affecting tumor growth [78]. 
Although high supplementation of the powerful antioxidant vitamin C 
could selectively kill KRAS and BRAF mutant colorectal cancer cells 
directly, this effect was not dependent on antioxidant function but, in 
contrast, was mediated by the oxidized form of vitamin C 
(dehydroascorbate) that depleted GSH resulting in increased production 
of ROS that inhibited GAPDH, a critical glycolytic enzyme necessary for 
tumor growth [79]. In addition, vitamin C efficiently controlled aberrant T 
cell activation by stabilizing CD8+ iTregs and enhanced their therapeutic 
potential in controlling murine GvHD and leukemia relapse [80,81], effects 
that would not be desired in the context of cancer. 

Moderate ROS production in T cells is required for cellular and 
signaling processes leading to T cell activation [82,83]. Complexes I/III of 
the mitochondrial electron transport chain (ETC) and the enzymes NADPH 
oxidase (NOX) and 5-lipoxygenase (5-LOX) are the main sources of TCR-
induced increase of ROS (Figure 2) [58,82–86]. Consistent with a key role 
of ROS in T cell responses, T cells deficient for the antioxidant 
peroxiredoxin have increased proliferation in vitro and in vivo, and 
enhanced generation of T effector cells [87]. In contrast, antioxidants have 
been shown to impair T cell responses [88–90]. Thiol redox state (TRS) is 
regulated by the key antioxidant glutathione (GSH), glutathione disulfide 
(GSSG), cysteine (CSH) and protein thiols (PSH) [91] and is an essential 
indicator of the overall cellular redox state and plays an important role in 
T cell function [89,92].  

Upon T cell activation mitochondria translocate proximal to the TCR 
[93]. From there, mitochondrial ROS (mROS) modulate redox-sensitive 
kinases and phosphatases to induce activation of NFAT, IL-2 production 
and proliferation [58,94]. Moderate levels of mitochondrial ROS can 
promote longevity and response capacity of memory T cells [95]. NOX-
derived ROS participate in TCR-signaling at multiple levels. Cytoplasmic 
NOX member dual oxidase 1 (Duox1) is involved in proximal TCR signaling 
whereas the membrane-bound NOX2 molecule is activated under 
conditions of chronic TCR stimulation and is involved in activation-
induced cell death (AICD) which requires CD95/CD95L engagement and 
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serves as a controlled cell death mechanism mediating contraction phase 
of activated T cells (Figure 2) [84,96]. Phospholipase A2 (PLA2) is an 
enzyme which upon T cell activation provides arachidonic acid for the 
biosynthesis for various lipids. Cyclooxygenases and lipoxygenases 
convert arachidonic acid to prostaglandins and leukotrienes, respectively, 
and these reactions give rise to lipid peroxides and intracellular ROS 
(Figure 2) [82]. Excessive iron-dependent lipid peroxidation results in a 
form of cell death termed ferroptosis (Figure 2) [97]. Ferroptosis can be 
induced in T cells by deficiency in the detoxifying enzyme glutathione 
peroxidase resulting in membrane accumulation of lipid peroxides and 
cell death [98]. However, efficient anti-tumor efficacy of immunotherapy 
has been shown to depend on activated CD8+ T cells which enhance 
ferroptosis-specific lipid peroxidation in tumor cells [99].  

 

Figure 2. Reactive oxygen species (ROS) impact on T cell activation. T cell receptor (TCR) signaling 
regulates ROS production by inducing distinct pathways, including phosphorylation of MAPKs cascade, 
activation of the proximal Duox1 and increase in protein kinase C (PKC)-dependent activation of NADPH 
oxidase. Co-stimulatory signaling through CD28 activates the PI3K pathway, which generates ROS in the 
conversion of arachidonic acid intermediates. Moderate levels of superoxide radical (O2•−) and hydrogen 
peroxide (H2O2) enhance IL-2 transcription, through NFAT nuclear localization, promoting T cell 
proliferation and activation. ROS induce Nrf2 translocation to the nucleus to regulate antioxidant response 
element (ARE)-dependent genes. Excessive ROS production results in activation-induced cell death (AICD) 
or ferroptosis.  
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Figure 3. Metabolic balance of T cell function and differentiation. Glycolysis, OXPHOS and FAO are 
tightly connected with ROS metabolism. TCR signaling simultaneously increases ROS levels and antioxidant 
responses. Modulating T cell metabolism alters ROS production and redox state with distinct effects on T 
cell activation, anergy and apoptosis, while antioxidant response (AR) halts T cell responses. ROS levels that 
exceed the protective capacity of antioxidant response may result in T cell hyperactivation and AICD or 
ferroptosis associated with cell contraction. Moderate ROS levels in turn are associated with T cell longevity 
and memory differentiation. Low ROS response levels are associated with T cell hypo-responsiveness and 
exhaustion. 

ROS have also been involved in T cell subset differentiation. For 
example, treatment with pro-oxidants prevented pathogenic Th17 and Th1 
cells from producing IL-17 and IFN-γ, respectively [100]. High ROS levels 
in the environment favored skewing towards a Th2 phenotype [101,102], 
whereas low levels of ROS have been associated with Th1 and Th17 cell 
differentiation [101,103], suggesting that targeting T cell redox state may 
be a potential therapeutic strategy for treating T cell-driven autoimmune 
diseases. As an example, use of the naturally occurring antioxidant 
molecule alpha-lipoic acid is being investigated for its immunomodulatory 
effects for the potential treatment of autoimmune diseases [104].  

Although moderate ROS production from mitochondria is required for 
T cell activation, excessive production has negative effects (Figure 3). It 
has been reported that T cells displaying high mitochondrial membrane 
potential produce more ROS and have diminished anti-tumor activity, 
whilst lower mitochondrial membrane potential is associated with more 
expression of T memory genes and increased T-cell survival [95]. These 
observations underline the limitations of using oxidative stress 
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modulators systemically to battle cancer, as it is currently not feasible to 
precisely control the magnitude of ROS production to optimal, desired 
levels. Although systemic modulation of oxidative stress alone may not be 
the right strategy to battle cancer, it might be efficient when synergizing 
with ICT. PD-1 blockade increased cellular ROS and mitochondrial mass 
together with proliferation and activation of CD8+ T cells in the tumor 
microenvironment [105]. Pharmacologic increase of ROS either directly by 
ROS precursors or indirectly by mitochondrial uncouplers synergized with 
PD-1 blockade to enhance cytotoxic T cell anti-tumor activity. This effect 
was based on ROS-mediated activation of mitochondrial metabolism 
through AMPK/mTOR-mediated signaling in tumor-draining lymph nodes, 
which increased downstream transcription factors such as PGC1α and T-
bet [105]. The combination of anti-PD-L1 monoclonal antibody and 
oltipraz or bezafibrate, two ligands of the PGC1α/Nrf2 and PGC1α/PPAR 
complexes, respectively, resulted in augmented tumor-suppression 
activity compared to either treatment alone, explained by the significant 
increase in both mitochondrial metabolism and glycolysis, driven by 
PGC1α/PPAR signaling [105]. Other studies showed that high-dose vitamin 
C in mouse tumor models synergized with anti-PD-1 to enhance cancer 
immunotherapy, but the exact mechanism of action remains unclear 
[106,107]. Similarly, adding metformin to PD-1 blockade regimen resulted 
in enhanced T cell anti-tumor immunity and tumor clearance in murine 
models by decreasing intra-tumoral hypoxia. This effect might be 
mediated by inhibition of complex I of the ETC by metformin, which would 
overall decrease oxygen consumption and OXPHOS [108]. However, 
metformin is a multifactorial compound, potent activator of AMPK and 
inhibitor of the glycolytic enzyme hexokinase 2 (HK2) [109,110]. In the 
context of cancer, these properties of metformin could potentially lead to 
unwanted effects on T cell differentiation such as AMPK-dependent Treg 
generation and suppression of glycolytic activity necessary for T cell 
effector function [39].   

Harnessing Lipid Metabolism to Improve T Cell Function 

Lipid metabolism can significantly affect T cell fate and function [111], 
thus might also be of therapeutic interest in tumor immunotherapy. 
Effector T cell proliferation and differentiation is supported by fatty acid 
synthase (FAS) whereas memory CD8+ and Treg cells rely on FAO [33,39]. 
Although manipulating fatty acid metabolism in vivo can affect multiple 
cell types with unpredictable outcomes, enhancing T cell fatty acid 
catabolism was shown as a promising therapeutic option in conditions of 
tumor-mediated T cell exhaustion when T cells were found to highly 
depend on FAO as the source of energy generation [112]. In fact, promoting 
FAO by using PPAR-α agonist fenofibrate improved CD8+ TIL’s ability and 
synergized with PD-1 blockade to slow tumor progression and to achieve 
superior anti-tumor efficacy [112]. This effect could have been linked with 
enhanced OXPHOS and mitogenic ROS production from mitochondria as 
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supported by similar studies in which treatment with PPAR activator 
bezafibrate combined with PD-1 blockade but not alone, led to CD8+ T cell 
activation through mitochondrial expansion correlating with decreased 
tumor growth and increased survival of MC38 tumor-bearing 
mice [105,113].  

High frequencies of intra-tumoral Treg cells represent a major barrier 
for anti-tumor immunity and tumor immunotherapy [114], but systemic 
Treg depletion strategies elicit deleterious autoimmune side-effects [115]. 
A recent study found that genetic ablation of the fatty acid receptor CD36 
in Treg cells selectively abrogated the abundance and suppressive activity 
of intra-tumoral Treg cells without eliciting autoimmunity [116]. The 
mechanism was dependent on a CD36-PPAR-β signaling axis mediated by 
unidentified lipids which sustained intra-tumoral Treg survival by 
maintaining mitochondrial fitness and ETC function, resulting in 
increased NAD+/NADH ratio, which is critical for metabolizing lactate. 
Targeting CD36 with a monoclonal antibody induced superior anti-tumor 
immunity, which was further improved when combined with PD-1 
blockade. These results suggest that targeting the metabolic adaptation of 
this newly identified intra-tumoral Treg population might be a promising 
strategy to improve tumor immunotherapy without disrupting systemic 
immunity and tissue homeostasis. 

Membrane lipids are directly involved in regulation of T-cell signaling 
and function [117–123]. Previous studies have shown the importance of 
cholesterol as a key component of membrane lipids, in TCR clustering and 
immune synapse formation [120–122]. Acetyl-CoA acetyltransferases 
(ACATs) are cholesterol esterification enzymes that convert free 
cholesterol to cholesteryl esters for storage. By using melanoma mouse 
tumor models and either ACAT1 pharmacologic inhibition or ACAT1-
knockout mice, a recent study showed increased cholesterol accumulation 
to CD8+ T cell plasma membranes resulting in improved TCR clustering, 
immunological synapse formation and more potent tumor-killing activity, 
inhibition of tumor growth, more prolonged survival time, effects that 
were further improved by PD-1 blockade [124].  

Adoptive Cell Therapy and T Cell Metabolism 

Adoptive cell therapy (ACT) is an innovative personalized treatment 
that involves removal and administration back to the cancer patient of 
those T cells that have direct anti-tumor activity. The method uses either 
natural patient T cells with specific anti-tumor activity or patient T cells 
that have been genetically engineered with specific anti-tumor TCRs or 
chimeric antigen receptors (CARs) [125]. The functionality of these 
adoptively transferred cells has also been linked to metabolism [126]. 
Effective anti-tumor function has been recently shown to be mediated by 
T cells expressing a hybrid Th1/Th17 phenotype [127]. In melanoma mouse 
models, hybrid T cells with combined Th1 effector function [128] and Th17 
longevity [129–131] had the ability to mediate potent anti-tumor effector 
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function with prolonged survival and persistence. These properties were 
dependent on the increased levels of NAD+ and the elevated activity of 
NAD+-dependent histone deacetylase Sirt1. These observations suggest 
that pharmacologic intervention to induce generation of such Th1/Th17 
hybrid T cells might represent a highly promising approach for 
improvement of ACT.  

Recent studies have identified combinations of costimulatory receptor 
domains from CD28, 4-1BB, ICOS and/or OX40 to generate CAR T cells with 
desired metabolic characteristics for long in vivo persistence, resistance to 
exhaustion and improved effector functions [132,133]. Incorporation of 
CD28 signal supports T cell activation and is associated with increased 
glucose influx, higher Glut1 expression, and PI3K/AKT pathway 
enhancement, leading to augmented glycolytic activity in externally 
modified effector lymphocytes [26]. 4-1BB costimulatory signal rather 
induces mitochondrial oxidative metabolism, promoting T memory cell 
survival, which has been described as an important factor for prolonged 
in vivo CAR T cell persistence [132,134]. 

Earlier in vitro studies had shown that engineered T cells to 
overexpress the antioxidant H2O2-metabolizing enzyme catalase were 
resistant to oxidative stress and cell death [135]. Recent in vivo studies 
from the same group showed that CAR T cells that expressed catalase 
exerted better anti-tumor activity [136]. Promoting thiol expression can 
also increase the durability of anti-tumor T cell functions [137]. 
Consistently, pre-treatment with N-acetyl cysteine, which limited AICD 
and T cell exhaustion, showed significant improvement in the efficacy of 
adoptive T cell therapy [138,139].  

Ex vivo manipulation of lipid metabolism might also be a promising 
strategy to improve functionality of adoptively transferred T cells. 
Treatment with cytokines IL-7 or IL-15 would promote lipid metabolism 
towards FAO to favor memory T cell phenotype [51,52,140,141]. As 
mentioned above, PPAR agonists that were shown to promote FAO and 
CD8+ TIL function [105,113] or ACAT inhibitors that potentiated T cell 
function by increasing plasma membrane cholesterol [124] would be 
expected to synergize with ICT. However, further studies are needed to 
examine the efficacy and therapeutic potential of these approaches.  

Interestingly, overabundance of potassium in the tumor 
microenvironment can suppress T cell effector function while preserving 
stemness. High levels of extracellular potassium prevented efficient 
nutrient uptake, induced autophagy and epigenetic modifications 
constraining T cell effector programs but favoring in vivo persistence, 
multipotency, and tumor clearance [142]. It remains to be determined if 
exposure to increased potassium levels prior to ACT might be a beneficial 
strategy to improve T cell-based cancer immunotherapy. Manipulating 
metabolic pathways may provide a strategy to enhance the generation of 
anti-tumor CD8+ T cells with desired memory characteristics and may aid 
immunotherapy to achieve potent and sustained effects on T cell function 
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(Table 1). Moreover, metabolic conditioning of T cells ex vivo for enhanced 
mitochondrial capacity and function may improve adoptive cell-based 
therapies aimed for superior anti-tumor responses (Table 1). 

Table 1. Potential metabolic interventions for immunotherapy. Potential therapeutic targets and 
treatments (together with key relevant references) to integrate metabolism in immunotherapy, impact of 
these potential therapies on the metabolism of T cells and the outcome of each targeted therapy on T cell 
responses.  

Treatment/Targets Metabolic Impact Outcome in T cells 

PD-1 Blockade [65] Increased glycolysis Restored effector function 

Compounds promoting ROS 
production [105] 

Activation of T cell 
transcription factors 

Increased effector function 

AKT/mTOR inhibitors [37] Reduced glycolysis 
Increased memory 
generation 

PGC1a overexpression, 4-
1BB agonist, recombinant 
Leptin, Bhlhe40 [70,71,73,74] 

Enhanced mitochondrial 
biogenesis and function 

Increased memory and 
enhanced antitumor 
function 

CD36 deletion/inhibition in 
Tregs [116] 

Reduced intratumoral Treg 
survival 

Enhanced antitumor activity 

Exposure to 
increased [K+] prior to ACT 
[142] 

Depleted cytoplasmic Ac-
CoA, reduced epigenetic 
modification of effector 
genes 

Maintenance of stemness 
and long-term persistence 

IL-7 and IL-15 prior to ACT 
[52,140] 

Promote Mitochondrial 
metabolism 

Increased memory and in 
vivo longevity 

4-1BBζ CAR T cells [132] Increased FA oxidation 
Increased central memory 
frequency 

CD28ζ CAR T cells [132] 
Preferential aerobic 
glycolysis 

Increased effector memory 
frequency 

CONCLUDING REMARKS  

Metabolism is undoubtedly tightly linked with T cell fate and function. 
Signaling molecules, transcription factors and epigenetic regulators are 
involved in T cell metabolic regulation but are also affected by metabolic 
alterations. Not only enhanced glycolysis but also balanced mitochondrial 
function, FAO, OXPHOS and ROS production are critical metabolic 
determinants of efficient anti-tumor responses. Elucidating the unique 
and combinatorial role of each metabolic pathway to favor effector, 
memory or regulatory T cell phenotypes will allow for metabolic 
interventions at will.  
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